Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/654
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Machhi, J | - |
dc.contributor.author | Shahjin, F | - |
dc.contributor.author | Das, S | - |
dc.contributor.author | Patel, M | - |
dc.contributor.author | Abdelmoaty, M M | - |
dc.contributor.author | Cohen, J D | - |
dc.contributor.author | Singh, P A | - |
dc.contributor.author | Baldi, A | - |
dc.contributor.author | Bajwa, N | - |
dc.contributor.author | Kumar, R | - |
dc.contributor.author | Vohra, L K | - |
dc.date.accessioned | 2023-07-18T07:09:44Z | - |
dc.date.available | 2023-07-18T07:09:44Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 1557-1904 | - |
dc.identifier.uri | https://link.springer.com/article/10.1007/s11481-020-09981-0 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/654 | - |
dc.description.abstract | Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs’ as a vaccine candidate delivery system. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Journal of Neuroimmune Pharmacology, 16 (Springer) | en_US |
dc.subject | Extracellular Vesicles | en_US |
dc.subject | SARS-CoV-2 | en_US |
dc.title | A role for extracellular vesicles in SARS-CoV-2 therapeutics and prevention | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Book Info.docx | 9.83 kB | Microsoft Word XML | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.