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CHAPTER-5 

RESULTS AND DISCUSSION 

5. 1 Results of Elimination of Baseline Wanders Noise for European ST-T and 

MIT-BIH database using Savitzky-Golay filter 

E lectrocardiogram (ECG) is a tool used for the electrical analysis of the status of   

human heart activity. When the ECG signal is recorded, it gets contaminated with 

different types of noises. So, noises must be eliminated from the ECG signal for 

accurate analysis. Other kinds of noises contaminate the characteristics of ECG 

signal, i.e., Power line interference, baseline wander, Electromyogram (EMG). In this 

research work, different techniques have been implemented to remove noises. A 

median filter is used to remove the DC component, and the Savitzky-Golay filter (SG) 

is used for smoothing noised waveform. Then, wavelet transform (db4) decomposes 

the ECG signal to remove various artifacts. Wavelet transform provides the 

information in frequency and time domain, and then thresholding has been applied to 

implement algorithms in MATLAB. The measured results, i.e., SNR (Signal to Noise 

ratio) and MSE (Mean square error), have been calculated using different databases 

like MIT-BIH, European ST-T database. The results are examined with proposed 

methods that are better than those reported in the literature. Whenever the baseline 

wander artifact present in an electrocardiogram (ECG) waveform, the waveform 

diverted from the zero-base line instead of straight line. Incorrect electrode placement, 

patient mobility, and respiration contribute to this artifact. This artifact in the 

electrocardiogram (ECG) signal has a negative impact and makes electrocardiogram 

(ECG) signal detection difficult. This artifact has a frequency range of 0.5 to 1 Hz. To 

remove baseline wandering noise, we collected 15000 ECG record samples of all 

records of the MIT-BIH database of 360 Hz sampling frequency and all records of the 

European ST-T dataset of 250 Hz sampling frequency. 

The electrocardiogram (ECG) signal is fragmented to the 10
th

 level into 

approximation coefficient and detail co-efficient in this proposed work [A. Kumar and 

M. Singh, 2015]. As a result, the last approximate coefficients, A9 and A10, which 

contain the frequency of baseline wander, are set to zero. Figure 5.1, 5.2, Figure 5.3, 

Figure 5.4, Figure 5.5 shows the removal of the baseline artifact for the European ST-

T database Figure 5.6, Figure 5.7…... Figure 5.16 shows the removal of the baseline 
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artifact for the MIT-BIH database, a short-wavelength artifact that alters the DC 

component up and down. First, to remove low-frequency noise, subtract the average 

of the electrocardiogram (ECG) signal from the applied input signal with a one-stage 

median filter, then smooth the waveform with a Savitzky-Golay filter. The wavelet 

transform (db4) is then implemented to the ECG signal to divide it into detail (Cd1, 

Cd2,..., Cd10) and approximate (Ca1, Ca2,..., Ca10) coefficients up to the tenth level.   

 
Figure 5.1 Elimination of baseline wanders noise in EDB dataset in e0103 record 

 
 

 

 

Figure 5.2 Elimination of baseline wanders noise in EDB dataset in e0104 record 
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Figure 5.3 Elimination of baseline wanders noise in EDB dataset in e0105 record 

 

 

 
 

Figure 5.4 Elimination of baseline wanders noise in EDB dataset in e0106 record 
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Figure 5.5 Elimination of baseline wanders noise in EDB dataset in e0107 record 

 

 

 

Figure 5.6 Elimination of baseline wanders of MIT-BIH dataset in 100 records 
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Figure 5.7 Elimination of baseline wanders of MIT-BIH dataset in 101 records 

 

 

 

Figure 5.8 Elimination of baseline wanders of MIT-BIH dataset in 103 records 
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Figure 5.9 Elimination of baseline wanders of MIT-BIH dataset in 104 records 

 

 

  

 

Figure 5.10 Elimination of baseline wanders of MIT-BIH dataset in 105 record 



120 

 

 

Figure 5.11 Elimination of baseline wanders of MIT-BIH dataset in 106 record 

 

 
 

 

Figure 5.12 Elimination of baseline wanders of MIT-BIH dataset in 108 record 
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Figure 5.13 Elimination of baseline wanders of MIT-BIH dataset in 112 record 
 

 

 

 

Figure 5.14 Elimination of baseline wanders of MIT-BIH dataset in 114 record 
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Figure 5.15 Elimination of baseline wanders of MIT-BIH dataset in 115 record 

 

 

 
Figure 5.16 Elimination of baseline wanders of MIT-BIH dataset in 116 record 
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5.2 Elimination of High-frequency noise in ECG signals for European ST-T and 

MIT-BIH  database using MOWPT 

As was already mentioned, the artifacts negatively impact the automated 

characterization of the ECG. For avoidance of mis-detection, unnecessary testing, and 

medical approaches, it is essential to identify artifact frequencies and distinguish these 

artifact changes from original changes. Similar to how baseline wandering can impact 

ST segments in an ECG signal, either ST segment depression or elevation can happen, 

which might be misinterpreted for myocardial ischemia. We have taken 15000 

samples of electrocardiogram records from all records of the MIT-BIH database of 

360 Hz sampling frequency to remove high-frequency noise and all records of the 

European ST-T database with a sample rate of 250 Hz. During recording, high-

frequency noise overlaps the features of the electrocardiogram (ECG) signal making 

electrocardiogram (ECG) signal analysis challenging for even the most experienced 

specialists. High noise has a frequency range of 100 to 150 Hz. A suitable band pass 

filter will not effectively minimize this type of noise. As a result, the wavelet 

transform function is utilized to eliminate high-frequency noise. As a result, the last 

approximate coefficients, A9 and A10, which contain the frequency of baseline 

wander, are set to zero. Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5 

shows the removal of the baseline artifact for the European ST-T database and Figure 

5.6, Figure 5.7…... Figure 5.16 shows the removal of the baseline artifact for the 

MIT-BIH database, a short-wavelength artifact that alters the DC component up and 

down. First, remove low-frequency noise, subtract the average of the 

electrocardiogram (ECG) signal from the applied input signal with a one-stage 

median filter, and then smooth the waveform with a Savitzky-Golay filter. The 

wavelet transform (db4) is then implemented to the ECG signal to divide it into detail 

(Cd1, Cd2,..., Cd10) and approximate (Ca1, Ca2,..., Ca10) coefficients up to the tenth 

level. The coefficients Cd1, and Cd2, which contain high-frequency noise, are thus 

removed using wavelet. Figure 5.17, Figure 5.18, Figure 5.19, Figure 5.20, Figure 

5.21 shows the removal of high-frequency noise European ST-T database and Figure 

5.22, Figure 5.23, …. Figure 5.32 shows the removal of high-frequency noise for 

MIT-BIH database.  
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Figure 5.17 Elimination of High-frequency noise of EDB dataset in e0103 record 

 

 

 
             

Figure 5.18 Elimination of High-frequency noise of EDB dataset in e0104 record 
 



125 

 

 

   Figure 5.19 Elimination of High-frequency noise of EDB dataset in e0105 

record 

 
 

Figure 5.20 Elimination of High-frequency noise of EDB dataset in e0106 record 
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Figure 5.21 Elimination of High-frequency noise of EDB dataset in e0107 record 

 

 

 
Figure 5.22 Elimination of High-frequency noise of MIT-BIH 

dataset in 100 records 
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Figure 5.23 Elimination of High-frequency noise of MIT-BIH dataset in 101 

record 

 

 

 
Figure 5.24 Elimination of High frequency noise of MIT-BIH dataset in 103 

record 
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Figure 5.25 Elimination of High-frequency noise of MIT-BIH dataset in 104 

record 

 

 
 

 

 

Figure 5.26 Elimination of High-frequency noise of MIT-BIH dataset in 105 

record 
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Figure 5.27 Elimination of High-frequency noise of MIT-BIH dataset in 106 

record 

 

 
        

Figure 5.28 Elimination of High-frequency noise of MIT-BIH dataset in 108 

record 

 



130 

 

 

Figure 5.29 Elimination of High-frequency noise of MIT-BIH dataset in 112 

record 

 
 

  

Figure 5.30 Elimination of High-frequency noise of MIT-BIH dataset in 114 

record 
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Figure 5.31 Elimination of High-frequency noise of MIT-BIH dataset in 115 

record 

 

 

Figure 5.32 Elimination of High-frequency noise of MIT-BIH dataset in 116 

record 

 

 



132 

 

5.3 Compared with Existing Approaches 

Various techniques for removing baseline wandering and high-frequency noise are 

analyzed and examined in the introduction section. In [A.K. Sangaiah et al., 2019], 

the wavelet transform approach is used for the MIT-BIH database, which contains an 

IIR filter for noise reduction, and signal-to-noise ratio (SNR) is derived. In [A.K. 

Manocha and M. Singh, 2015], a wavelet–based technique is used for denoising in a 

European ST-T database. The percentage to per cent root-mean-square difference 

(PRD) is calculated after using different wavelet families. This proposed work 

compares Signal to noise ratio and Mean square error with various datasets [A.K. 

Sangaiah et al., 2019;  D. Zhang et al., 2019]. The Signal Noise ratio, or MSE, for 

these datasets is determined here, and the results we have calculated are better than 

the existing work, as given in Table 5.1 and Table 5.2. 

 

Table 5.1. Comparison of SNR using different records of different database 

 

 

 

 

 

Sr.no SNR(db) 

European  ST-T 

Database 

MIT-BIH 

Database 

Wavelet 

transform with 

IIR filter for 

MIT-BIH 

database [A. 

Sangaiah et.al, 

2019] 

Wavelet 

transform 

+median 

filter+SG 

filter median 

filter for 

European 

ST-T 

database 

(Proposed) 

Wavelet transform 

+median filter+SG 

filter median filter 

for MIT-BIH 

Database 

(Proposed) 

    

1 e0103 100 -9.6034 27 26.13 

2 e0104 101 -4.2652 25 8.589 

3 e0105 102 -7.5858 30 27.01 

4 e0106 103 -4.2652 24.85 29.68 

5 e0107 104 -4.6572 21.898 28.53 

6 e0108 105 -5.2787 27 29.53 

7 e0110 106 -6.75 22.2746 25.89 
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Table 5.2 Examination of the Mean square error using different records of 

different database 

Sr. 

No. 

MSE 

European ST- 

T database 

MIT-BIH 

Database 

Wavelet 

transform with 

sub- band 

smoothing 

filter for MIT-

BIH 

Database [D. 

Zhang et.al, 

2019] 

Wavelet 

transforms 

+median filter+SG 

filter median filter 

for European ST-T 

database 

(Proposed) 

Wavelet transforms 

+median filter+SG 

filter median filter 

for MIT-BIH 

Database (Proposed) 

1 e0103 100 0.00015 4.7387 e-06 8.9094 e-06 

2 e0104 101 0.00018 6.0501 e-05 1.9905 e-06 

3 e0105 102 0.00014 2.6055 e-06 1.041 e-06 

4 e0106 103 0.00019 1.3532 e-05 5.1858 e-06 

5 e0107 104 0.00018 1.5417 e-05 7.6531 e-06 

           

5.4 Detection of ECG Characteristic Points 

We added 100 sample points (zeros) before and after the pre-processed one-minute 

ECG segments to look for distinctive points in the pre-processed ECG signal. Local 

maxima are scanned across the entire ECG segment. These maxima are saved in the 

(max)h array. ECG max is defined as the highest value in this collection. ECG mean is 

a variable that stores the average value of all sample points in the signal. ECG amp is 

defined as (ECG max – ECG mean)/2. ECG_thresh = (ECG max) *(ECG amp) for 

identifying all R peaks is the threshold for detecting R waves. R peaks are defined as 

all ECG record peaks that are above this threshold level [A.K Manocha and M. Singh, 

2015; S. Banerjee et al., 2012; C. Li et al., 1995]. R INDEX holds the time position 

and amplitude of each R peak. After successfully detecting R peaks, the search moves 

back and forth between maxima and minima for P, Q, T, and S peaks. The first step is 

to look for a local maximum in window [R INDEX-400ms: R INDEX-200ms], which 

represents the P peak. 

In the same way, [R Index-200ms: R_INDEX-40ms] is used for a local minimum 

where it yields a Q peak, is used. The search for a local minimum in the window [R 

INDEX+20ms: R INDEX+100ms] for such an S peak and a local maximum in the 

window [R INDEX+200ms: R INDEX+400ms] for the T peak follows a similar 

approach. P_INDEX, Q_ INDEX, S_INDEX, and T_INDEX contain the appropriate 
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sample locations and amplitudes of the observed characteristic waves. " represents the 

P, QRS complex and T peaks for 10 typical records from the European ST-T database 

and MIT-BIH database, as shown in Figure 5.33…… 5.37. Tables 5.3, 5.4 and 5.5 

show the identified sample time values corresponding to these peaks (location) for 

standard (e0103), elevated (e0103), and depressed (e0105) signals throughout 10 

seconds. 

5.4.1 Onset and Offset Points Detection 

The search for the corresponding INDEX to verify the slope sign inversion is initiated 

within the window for the onset and offset points of each characteristic wave. As 

given in Eqn. (5.1), the slope is calculated using Newton’s difference quotient 

expression. The onset window is [INDEX-80ms: INDEX] while the offset window is 

[INDEX: INDEX+80ms]. 

 (   )  ( )

 
                (5.1) 

The slope of a secant line passing through the points (x+h, f (x+h)) and (x, f (x)) was 

determined using a basic two-point estimator. 'h' represents one sample interval in this 

case. The start and offset points that result have nearly zero slopes. The ON and OFF 

indices are then used to hold equivalent onset and offset sample values. In Figure 

5.33…… Figure 5.37, black and blue stars represent the onset and offset sample 

values, respectively [A.K. Manocha and M. Singh, 2015] [Z. Zidelmla et.al, 2012]. 

Table 5.3, Table 5.4 and Table 5.5 show the detected sample time value for onset and 

offset points for normal, elevated (e0103), and depressed (e0105) signals throughout a 

10-second period. 

5.4.2. Calculation of Heart Rate 

The heart rate, expressed in beats per minute, is calculated by measuring the distance 

between the two corresponding R-R intervals (BPM). An ECG record represents the 

average amount of time spent between R and R. intervals in the 60 seconds. Table 5.3, 

Table 5.4 and Table 5.5 show the observed heart rate for normal (e0103), elevated 

(e0103), and depressed (e0105) signals throughout 10 seconds. 

5.4.3 Isoelectric Reference Detection (IR) 

The TP segment determines the isoelectric reference, which is the region between the 

current beat's offset and the next beat's onset. This segment is a flat line between these 
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two places, and the voltage in this segment is essentially nil. The average isoelectric 

reference value for all beats is calculated for each record. Table 5.3, Table 5.4 and 

Table 5.5 show the observed isoelectric reference for normal and elevated for the 

record (e0103) and depressed signal for the record (e0105) throughout 10 seconds. 

 

Figure 5.33 Delineation results for e0103 record 

 

 

 

  

Figure 5.34 Delineation results for e0105 record 
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Figure 5.35 Delineation results for e0113 record 
 
 

 

 

 
 

 

Figure 5.36 Delineation results for e0159 record 

 



137 

 

 

Figure 5.37 Delineation results for e0162 record 

 

5.4.4 Identifying Amplitude Characteristics 

The amplitude features obtained from diagnosis characteristic points are carefully 

considered. Q height = QRS onset amplitude – Q peak amplitude 

R height = R amplitude – isoelectric reference from TP region  

S height = QRS offset amplitude -      S amplitude 

P height = P amplitude – isoelectric reference from TP region 

T height = T peak amplitude – isoelectric reference from TP region 

5.4.5 Identifying Time Plane Characteristics 

The time-plane characteristics obtained from detecting the onset and offset points of 

characteristic waves are as follows: 

R–R interval = Distance between two consecutive R peaks 

PR interval = P onset: R peak location 

QRS width = QRS onset: QRS offset 

ST interval= S onset: T offset 
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QT interval = QRS onset: T offset 

The QT interval's normalized value is corrected (hypothetically at a rate of 60 beats 

per minute) as given by Eqn. (5.2) 

𝑄𝑇  =            

√            
           (5.2) 

Table 5.3, Table 5.4 and Table 5.5 demonstrate the amplitude and time plane feature 

for normal (e0103), elevated (e0103), and depressed (e0105) records of 10 seconds 

duration. 

 

Table 5.3 Amplitude and Time Plane Features for Delineated Characteristic 

Waves for Normal          Signal 

 
ECG 

parameters 

(Amplitude 

-mV & Location/ 

Interval- Second) 

Calculated values of e0103 normal signal (10 sec duration) of European ST-T Database 

P_height (m V) 0.08 0.086 0.100 0.110 0.0857 0.0999 0.0978 0.104 0.0792 0.08 

Q_height ( V) 0.03 0.018 0.023 0.0349 0.0063 0.0394 0.0199 0.0152 0.0303 0.026 

R_height ( V) 1.76 1.725 1.757 1.77 1.782 1.664 1.837 1.743 1.675 1.732 

S_height(m V) -0.02 - 0.02 -0.013 -0.0054 - 0.0049 -0.0295 -0.0019 -0.0025 -0.0140 -0.01 

T_height( mV) 0.362 0.31 0.317 0.3278 0.3127 0.3467 0.3232 0.3016 0.2872 0.32 

PLoc 0 0.95 1.884 2.876 3.88 4.896 5.864 6.908 7.94 8.92 

QLoc 0.144 1.04 1.968 2.988 3.952 4.972 5.968 6.988 8.012 9.0 

Rloc 0.204 1.08 2.012 3.012 4.012 5.028 6 7.036 8.068 9.06 

SLoc 0.264 1.13 2.072 3.072 4.072 5.088 6.06 7.096 8.128 9.12 

TLoc 0.468 1.33 2.268 3.276 4.272 5.284 6.256 7.292 8.324 9.31 

ST segment 0.271 0.236 0.296 0.3 0.256 0.284 0.288 0.292 0.288 0.28 

QRS 

width(sec) 
0.108 0.17 0.132 0.116 0.188 0.156 0.112 0.14 0.152 0.15 

QTinterval (sec) 0.402 0.40 0.424 0.412 0.44 0.436 0.396 0.428 0.436 0.43 

QTc(sec) - 0.433 0.438 0.411 0.441 0.429 0.404 0.406 0.43 0.44 

PRinter(se c) - 0.192 0.196 0.208 0.176 0.2 0.204 0.2 0.196 0.20 

R-R 

interval(sec) 
0.91 0.87 0.932 1.004 0.996 1.016 0.972 1.04 1.028 0.99 

Heart Rate(bpm) 68 
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Table 5.4 Elevated Signal of Record e0103 of 10 (second) duration of European 

ST-T Database 
 

ECG 

parameters (Amplitude 

-mV & Location/ 

Interval- Second) 

Calculated values of e0103 elevated signal of 10 second  

duration of European ST-T Database 

P_height (m V) 0.073 0.097 0.096 0.109 0.095 0.114 0.103 0.098 0.088 0.09 

Q_height (m V) 0.0014 0.0003 0.013 0.0003 0.0019 0.033 0.021 0.018 0.019 0.03 

R_height (m V) 1.789 1.723 1.743 1.778 1.803 1.783 1.772 1.847 1.87 1.788 

S_height (m V) -0.0004 -0.0041 -0.0079 -0.0067 - 0.0193 -0.0058 -0.0024 -0.0177 - 0.00532 -0.00642 

T_height (m V) 0.286 0.258 0.246 0.264 0.262 0.254 0.237 0.283 0.274 0.267 

PLoc 0.292 1.288 2.236 3.212 4.168 5.152 6.14 7.072 8.02 8.988 

QLoc 0.372 1.364 2.316 3.284 4.248 5.236 6.22 7.152 8.116 9.076 

Rloc 0.432 1.424 2.376 3.344 4.308 5.296 6.276 7.212 8.156 9.12 

SLoc 0.492 1.484 2.432 3.404 4.368 5.356 6.336 7.272 8.204 9.18 

TLoc 0.68 1.676 2.628 3.588 4.56 5.548 6.524 7.456 8.404 9.368 

ST segment 0.26 0.268 0.264 0.26 0.252 0.236 0.248 0.264 0.296 0.236 

QRS width(sec) 0.144 0.148 0.164 0.148 0.136 0.192 0.156 0.132 0.108 0.156 

QTinterval                      

( sec) 

0.402 0.404 0.424 0.412 0.44 0.436 0.396 0.428 0.436 0.436 

QTc(sec) - 0.433 0.438 0.411 0.441 0.429 0.404 0.406 0.43 0.44 

PRinter(sec) 0.2 0.2 0.196 0.196 0.204 0.208 0.2 0.204 0.2 0.196 

R-R 

interval (sec) 

0.91 0.872 0.932 1.004 0.996 1.016 0.972 1.04 1.028 0.992 

Heart rate (bpm) 62 
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Table 5.5: Amplitude and Time Plane Features for Delineated Characteristic 

Waves for Depressed Signal 

ECG 

parameters 

(Amplitude 

-mV & Location/ 

Interval- Second) 

Calculated values of e0105 depressed signal of 10 second duration of European ST-T 

Database 

P_height(m V) 0.082 0.088 0.086 0.082 0.084 0.078 0.085 0.082 0.0829 

Q_height(m V) 0.061 0.031 0.042 0.063 0.045 0.04 0.055 0.057 0.017 

R_height(m V) 1.39 1.42 1.35 1.29 1.37 1.38 1.36 1.31 1.39 

S_height(m V) -0.047 -0.025 -0.011 -0.039 -0.054 0.005 0.009 -0.061 -0.008 

T_height(m V) 0.13 0.151 0.152 0.143 0.138 0.139 0.141 0.141 0.124 

PLoc 0.36 1.456 2.544 3.644 4.712 5.788 6.86 7.948 9.008 

QLoc 0.504 1.596 2.692 3.784 4.856 5.932 7.012 8.088 9.152 

Rloc 0.532 1.624 2.716 3.812 4.884 5.96 7.04 8.116 9.18 

SLoc 0.592 1.684 2.776 3.872 4.944 6.02 7.1 8.176 9.24 

TLoc 0.888 1.98 3.068 4.16 5.24 6.308 7.388 8.476 9.536 

ST segment 0.344 0.392 0.396 0.312 0.32 0.388 0.392 0.324 0.344 

QRS 

width(sec) 
0.16 0.12 0.1 0.188 0.192 0.108 0.104 0.188 0.112 

QTinterval( sec) 0.504 0.508 0.492 0.496 0.508 0.492 0.492 0.508 0.508 

QTc(sec) 0.484 0.493 0.473 0.473 0.493 0.473 0.472 0.474 0.496 

PRinter(sec) 0.236 0.232 0.236 0.232 0.236 0.236 0.244 0.232 0.236 

R-R 

interval (sec) 
1.087 1.092 1.092 1.096 1.072 1.076 1.08 1.076 1.064 

Heart Rate(bpm) 56.01 

 
 

5.5 Effects of Artifact Removal on the Delineation Process 

 

The artifacts, as previously mentioned, hurt the computerized ECG delineation. To 

avoid misdiagnosis, unnecessary testing, and therapeutic interventions, it is critical to 

recognize artifact frequencies and distinguish these artifact changes from genuine 

changes. Baseline wanders can affect ST segments in ECG signals, causing ST 

segment depression or elevation, which can be misinterpreted as myocardial ischemia. 

High frequency can sometimes overlap with the QRS complex, creating the 

appearance of atrial flutter or fibrillation. P wave obliteration can resemble a heart 

block [S. Scheidt, 1984]. The discarding of wavelet coefficients corresponding to 

artifact frequencies of the original ECG signal has no adverse effects on the 

morphology of the original ECG signal, as illustrated in Figure 5.38, considerably 
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increasing the doctor's skill in defining the patient's appropriate treatment. Normal 

European ST-T Segment of the e0103m record from the European ST-T database was 

preferred to support the claim of improved ischemia detection sensitivity. 

 

Figure 5.38 Frequency components of artifacts in wavelet decomposed ECG 

signals for European ST-T database 

A 0.25 Hz baseline was superimposed to represent artifact due to breathing during the 

1809 beats investigated. The remaining 623 beats were detected as ischemic, whereas 

1186 beats were detected as normal. The normal signal's sensitivity drops to 65.56 

percent due to false positives. When the proposed approach was used to remove this 

baseline wander, the sensitivity was restored to 100%. In computer-assisted ischemia 

detection, simply removing the baseline can increase sensitivity considerably. 

In MATLAB 2018, the suggested approach for the delineation procedure is applied 

and evaluated for 10 typical ECG records of the European ST-T database (EDB) and 

all records of the MIT-BIH database and from Physio-bank. Furthermore, the peaks of 

all ECG characteristic points and their respective onset and offset sample values are 

manually validated against their original ECG data points in Microsoft Excel. The 

proposed technique was tested on 10 representatives during the entire recording as 
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well as the first hour of the e0103, e0104, e0105, e0108, e0113, e0114, e0147, e0159, 

e0162, and e0206 recordings. 

These records provided a dataset of 43876 heartbeats for one recording lead. The final 

dataset contains 43,762 beats after removing artifacts and mis-detected beats during 

delineation. The proposed method is ineffective for detecting bi-phasic T waves 

(e0159 record), where T offset locations have been precisely identified. Table 5.6 

demonstrates that for 10 typical records, omitting T waves of e0159 records, the 

average sensitivity is 99.94 %, and positive productivity is 99.98 %. The performance 

outcomes i.e., sensitivity (SE), and positive productivity (+P) were measured by 

employing Eqn. (5.3) and Eqn. (5.4) for above mentioned records. 

Sensitivity (SE) = [TP/ (TP+FN)] *100                      (5.3) 

Positive productivity (+P) = [TP/ (TP+FP)]*100         (5.4) 

Where TP is true positive, FP is false positive, and FN is false negative. The 

sensitivity and positive productivity measurements are defined in Eqns. (5.3) and 

(5.4). In addition to the above dataset, the developed delineation method has been 

validated on another dataset, which contains 37,333 for the first 30 minutes of e0103, 

e0104, e0105, e0108, e0113, e0114, and e0147, e0159, e0162, e0206. For this dataset, 

the developed technique, we have achieved 98.5 % average sensitivity and 98.3% 

average positive productivity, as given in Table 5.6. 

Table 5.6 Evaluation Metrics for Ten Representative Recordings 
 

Sr. No. Record No. No. of beats SE (%) +P(%) 

1 e0103 3696 99.98 99.87 

2 e0104 7824 99.92 99.81 

3 e0105 3357 99.81 99.84 

4 e0108 3301 99.82 99.63 

5 e0113 4225 99.38 99.67 

6 e0114 2858 99.47 99.77 

7 e0147 3261 99.64 99.69 

8 e0159 4449 99.76 99.91 

9 e0162 5294 99.78 99.86 

10 e0206 5611 99.68 99.78 

 Total 43,876 98.5 98.3 

 5.5.1 Comparisons with Existing Methods 

 

Despite this, it is tough to compare the proposed method to existing methods due to 

the abundance of databases available in the literature for the validation process. QRS 
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detection methods are classified as syntactic, non-syntactic, and hybrid. Because of 

the need for grammatical inference, the syntactic approach [E. Pietka, 1991] is time-

consuming. Non-syntactic methods preferred band pass filters, suppressing the P and 

T waves [Q. Xue, Y.H. Hu et al., 1992; P.S. Hamilton and W.J. Tompkins, 1986]. 

Most of the reported methods cannot detect the P wave following the detection of the 

QRS complex, which is commonly embedded in artifacts—the proposed method in 

[F. Gritzali, 1988] can detect P and T waves through length transformation but is not 

resistant to noise and artifacts. The pan- Tomkins method [J. Pan and W.J. Tomkins, 

1985] used nonlinear transformations such as derivatives and squaring to detect the 

QRS complex of the ECG signal. Still, it has the following drawbacks: 1) Even within 

the same subject, the signal frequency band of the QRS complex varies between 

beats. 2) Artifact frequency bands and QRS complex frequency bands overlap. The 

proposed method preserves the small frequency waves of the P and T waves, as 

determined by Dhono's method [K. Daqrouq, 2005]. Table 5.7 compares the 

performance of the developed method to that of previously published methods for 

European ST-T database records. It should be noted that the comparative methods do 

not have the same number of datasets as the other methods. For ten representative 

ECG records, the developed delineation method achieves 99 percent sensitivity and 

100 percent positive productivity. In comparison to other methods, the developed 

method has the highest positive productivity. 

Table 5.7 Performance evaluation of developed method with existing method: 

application using European ST-T database 

Detection Algorithm SE (%) + P (%) 

 [J.P. Martinez et.al, 2004] 99.61 99.48 

 [G.B. Moody & R.G. Mark, 1982] 95.09 98.63 

[A. Ghaffaria, 2009] 99.63 99.55 

[L.Y.D. Macro and L. Chiari, 2011] 99.81 99.56 

Proposed Method 99 100 

 

5.6 Flow Diagram of R-peak detection using MIT-BIH Database 

R-wave positions are defined as the de-noised ECG data's most significant amplitude. 

Figure 5.39 shows the flow chart for the detection of R-loc. To discover a satisfactory 

localization of the window of size 160 milliseconds around the QRS area, a practical 

threshold of 15% of the maximum amplitude of (D3+D4+D5) was carefully chosen. 
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A search procedure is started around the de-noised ECG beats to find amplitudes 

bigger than the predetermined threshold level. The signal's highest amplitude 

determines the R-peak placements in the chosen window. Between two successive 

searches in which ventricular depolarization cannot occur, therefore the period of 200 

milliseconds is measured. The maximum peaks discovered are classified as R-peaks 

and are kept in an array of Rloc. 

 

Figure 5.39 Flowchart for developed method for delineation process  

 

5.6.1 Detection of QRS complex using MIT-BIH database 

Based on their power spectrum of QRS band energy, the detail coefficients of DWT 

are selected to detect the QRS complex. Because of their physical resemblance to the 

QRS complexes, the three sets of detail coefficients D3, D4, and D5 are combined. By 

determining the fiducial position from the window's width (160 milliseconds), a 

sliding window of 200 milliseconds is utilized to detect the position of the R peak in 
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each window location. 

5.7 Results for detection of characteristics point using MIT-BIH database 

The MIT-BIH arrhythmia database assessed the proposed R-peak detection and QRS 

complex approach. The recorded ECG signals are satisfactory in terms of quality, 

waves, QRS components, and abnormal cardiac beats. Figure 5.42 to Figure 5.48 

show the delineation results of ECG Signal (P, QRS, T peak detection) of MIT-BIH 

database for 103, 105, 106, 107, 108, 109, 111 record and Table 5.8 provides a 

summary of the results for all 48 records in the MIT-BIH arrhythmia database. 

5.7.1 Detection of R-peak 

Figures 5.40 to Figures 5.42 show an abnormal ECG signal that has been de-noised 

using Savitzky- Golay filter for baseline wander correction. The simulation findings 

for R Peak detection and QRS detection of 103 records of the MIT-BIH database are 

shown in Figures 5.41 and Figure 5.42.  

 

Figure 5.40 Original ECG signal of MIT-BIH database for record 103 
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Figure 5.41 Detection of R Peak ECG signal of MIT-BIH database for record 103 

 

 

 
 

Figure 5.42 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 103 record 
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Figure 5.43 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 105 record 

 

 

Figure 5.44 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 106 records 
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Figure 5.45 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 107 record 

 

 

Figure 5.46 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 108 record 
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Figure 5.47 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 109 record 

 

 

Figure 5.48 Delineation of ECG Signal (P, QRS, T peak detection) of MIT-

BIH database for 111 records 
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Table 5.8 Extracted features of ECG recorded signals 
 

Record # Qamp Ramp Samp Tamp QT_Int ST_Int RR_Int QRS_Dur 

100 -0.156 0.792 -0.151 0.025 0.389 0.464 0.813 0.105 

101 -0.089 0.809 -0.094 0.096 0.324 0.334 0.845 0.176 

102 -0.084 0.785 -0.192 0.115 0.355 0.363 0.826 0.165 

103 -0.149 0.926 -0.161 0.157 0.299 0.351 0.855 0.089 

104 -0.027 0.434 -0.180 0.103 0.411 0.437 0.801 0.130 

105 -0.041 0.703 -0.133 0.065 0.322 0.327 0.723 0.168 

106 -0.082 0.748 -0.152 0.152 0.311 0.345 0.886 0.165 

107 -0.066 0.616 -0.669 0.367 0.381 0.366 0.850 0.222 

108 -0.028 0.303 -0.069 0.061 0.415 0.395 0.662 0.167 

109 -0.069 0.726 -0.3567 0.117 0.411 0.406 0.655 0.183 

111 0.024 0.739 -0.294 0.257 0.311 0.329 0.849 0.145 

112 -0.019 0.822 -0.305 0.153 0.382 0.422 0.701 0.156 

113 -0.101 0.891 -0.205 0.381 0.357 0.434 1.016 0.118 

114 -0.576 0.219 -0.704 0.363 0.291 0.368 0.985 0.120 

115 -0.047 0.903 -0.378 0.063 0.395 0.430 0.959 0.107 

116 -0.088 0.908 -0.181 0.157 0.283 0.313 0.761 0.144 

117 -0.122 0.655 -0.784 0.562 0.347 0.397 1.202 0.170 

118 -0.016 0.773 -0.623 0.076 0.398 0.395 0.828 0.176 

119 0.003 0.637 -0.113 0.081 0.342 0.364 0.830 0.118 

121 -0.041 0.789 -0.021 0.115 0.309 0.325 0.999 0.206 

122 -0.192 0.9201 -0.127 -0.013 0.309 0.333 0.687 0.198 

123 -0.045 0.866 -0.348 0.168 0.373 0.415 1.252 0.118 

124 -0.041 0.896 -0.121 0.026 0.421 0.432 1.210 0.125 

200 -0.028 0.399 -0.399 0.165 0.355 0.389 0.682 0.147 

201 -0.041 0.866 -0.094 0.121 0.311 0.292 0.667 0.170 

202 -0.001 0.838 -0.058 0.178 0.331 0.314 1.125 0.191 

203 -0.044 0.622 -0.206 0.202 0.357 0.327 0.572 0.186 

205 -0.119 0.899 -0.099 0.062 0.325 0.382 0.669 0.110 

207 -0.072 0.227 -0.264 0.258 0.388 0.397 0.781 0.150 

208 0.043 0.671 -0.144 0.124 0.373 0.374 0.574 0.145 

209 -0.119 0.826 -0.499 0.151 0.251 0.317 0.642 0.114 

210 -0.011 0.827 -0.154 0.052 0.412 0.369 0.661 0.156 

212 -0.111 0.841 -0.374 0.251 0.289 0.296 0.659 0.211 
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213 -0.103 0.916 -0.362 0.241 0.281 0.333 0.542 0.113 

214 -0.015 0.879 -0.087 0.018 0.409 0.362 0.796 0.148 

215 -0.053 0.332 -0.262 0.156 0.235 0.288 0.536 0.136 

217 -0.077 0.635 -0.849 0.448 0.385 0.396 0.821 0.195 

219 0.001 0.925 -0.089 0.027 0.452 0.461 0.804 0.109 

220 -0.043 0.892 -0.401 0.086 0.3411 0.355 0.834 0.139 

221 -0.005 0.836 -0.136 0.110 0.363 0.380 0.763 0.118 

222 -0.056 0.581 -0.103 0.036 0.234 0.296 0.801 0.092 

223 0.003 0.899 -0.125 -0.005 0.403 0.419 0.749 0.111 

228 -0.052 0.365 -0.054 0.08656 0.319 0.342 0.818 0.163 

230 -0.031 0.686 -0.501 0.116 0.297 0.316 0.758 0.126 

231 -0.202 0.825 -0.468 0.243 0.368 0.417 0.951 0.151 

232 -0.057 0.705 -0.472 0.292 0.345 0.387 0.958 0.139 

233 -0.017 0.672 -0.289 0.240 0.427 0.401 0.581 0.180 

234 -0.071 0.834 -0.109 0.005 0.363 0.360 0.651 0.174 

 

5.7.2 Amplitude and Time Plane Features Statistical Analysis 

The statistical analysis of recorded amplitude and time plane features [S. Banerjee et 

al., 2012; I.I.  Amr et al., 2010] can also be utilized to validate results for all 

measurements of single detected characteristic points. Standard deviations (S.D.) and 

coefficients of variation (C.V.) are considered in this process and calculated using 

Eqn. (5.5), Eqn. (5.6) and Eqn. (5.7). Here, xi denotes the ith beat and n is the total 

number of beats in the record. 

Mean=∑
  

 
                                                  (5.5) 

S.D = √∑
(       ) 

 

 
                                    (5.6) 

Coefficient of Variance (C.V) = (S.D/Mean)*100  (5.7) 
 

The standard deviation (SD) indicates the absolute dispersion around the mean in a 

data series. The Coefficient of Variation (CV) on the other hand, represents 

consistency and reflects dispersion within a set of data as a percentage value.   

5.7.3 Results and Discussion for Feature Extraction Process 

With an average accuracy of 99.12 percent, the suggested deep learner CNN classifier 
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classifies the samples into five categories of arrhythmias. The proposed model's 

sensitivity and specificity are 100% and 99.9%, respectively. The identification and 

detection of cardiac arrhythmia is integrated with the Internet of medical things (IoT), 

allowing users to monitor their health during daily activities like walking and jogging. 

Implementing another sophisticated security technique and improved machine, the 

suggested study activity's future development includes continuing to learn 

consideration of multiple cardiac diseases in the telecardiology area. 

Features are usually divided into two types, i.e., Morphological parts and Statistical 

features. Morphological features include P wave duration, QRS complex, T wave, RR 

interval, ST slope and heart rate. The statistical features cover means, RMS, standard 

deviation, skewness, and kurtosis. These are the essential features we have calculated 

for classifying various arrhythmias. 

5.7.4 Morphological Features Calculation 

In this stage, by starting the analysis, we have been capable of extracting different 

morphological features. The morphological characteristics of all MIT-BIH databases 

are calculated, and the value of each feature is given in Table 5.9. 

Table 5.9 Detected morphological features 
 

Feature Value 

R-R interval 0.6020 

QRS complex 0.3010 

ST segment 0.3100 

T wave 0.1870 

P wave 0.1140 

Heart rate 99.66 

 

5.7.5 Statistical Features Calculation 

In this stage, we have extracted various statistical features by performing the 

statistical analysis. These involve mean, root mean square (RMS), standard deviation 

(SD), skewness, kurtosis, and peak value. The mathematical calculation of statistical 

features is using Eqns. (5.5), (5.6) and Eqn. (5.8) given in Table 5.10. 

Mean=∑
  

 
                                                  (5.5) 

S.D = √∑
(       ) 

 

 
                                    (5.6) 
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RMS=√∑   
 

        (5.8) 

Here,  𝑖= ith beat and n represents the total number of beats, while SD denotes the 

standard deviation used for the measurement of absolute dispersion in the signal. It 

provides the facility for the calculation of a complete dataset. Skewness (S) is used to 

measure the similarity of given data. The skewness has the property of perfect 

symmetry, i.e., the normal distribution has the value of exactly zero, defined as in 

Eqn. (5.9). 

Skewness = E[x-µ/σ]
3
      (5.9) 

Similarly, even if a normally distributed version of the data has reached its peak or is 

flat, the Kurtosis (K) is used for the measurement defined in Eqn. (5.10) 

Kurtosis = E[x-µ/σ]
4                    

(5.10) 

The statistical features of all MIT-BIH database is calculated and the value of each  

feature is given in Table 5.10. 

Table 5.10 Detected statistical features 
 

Parameter Value 

Mean 0.7308 

Root Mean Square   value 0.732 

Standard Deviation 0.0436 

Kurtosis 17.594 

Skewness 3.4468 

Peak Value 1 

 

5.8 Results of Classification Using Deep Learned CNN 

The suggested study uses a deep learner convolutional neural network for 

classification, using the fully connected layer (FC) to accomplish signal classification. 

Table 5.11 describes the functions used in the proposed deep Learning Convolution 

neural network model. Then we tested the different classifiers to see whether they 

could improve the model's outputs. Table 5.12 Parameters of implemented deep 

learned CNN model and Figure 5.49 shows the block diagram for the proposed work, 

and Figure 5.50 shows the schematic diagram of the proposed 1D-CNN model. We 
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compared the results of the proposed deep learned convolution neural network (CNN) 

model with the results of existing electrocardiogram cardiac arrhythmia classification 

models, such as deep convolution neural network, support vector machine (SVM), 

knowledge base technique, genetic algorithm-based back-propagation Neural 

network, convolution neural network (CNN), bat-rider optimization algorithm-based 

deep convolutional neural networks (BaROA DCNN). Figure 5.51, Figure 5.52 and 

Figure 5.53 illustrate the calculated findings in terms of accuracy, sensitivity, and 

specificity. 

As shown in Figure 5.54, the training set consists of diverse samples separated into 

five classes. The calculated values are given in Table 5.13, i.e. non-ectopic beat, 

supraventricular ectopic beat, ventricular ectopic beat, fusion beat, and unknown beat. 

Table 5.14 shows the explanation of various approaches. The proposed method is 

superior to existing approaches such as knowledge base technique, support vector 

machine (SVM), convolution neural network (CNN), deep convolution neural 

network (DCNN), genetic algorithm-based back-propagation Neural network (GA-

BPNN), CNN+LSTM, bat-rider optimization algorithm (BaROA DCNN) and  

proposed method in terms of accuracy is 85.07%, 91.68%, 92.44 %, 92.34%, 92.27%, 

92.26%, 93.19%, 99.12%—deep convolutional neural networks based on the bat-rider 

optimization algorithm (BaROA DCNN). Convolutional neural networks and long 

short-term memory (CNN+LSTM) are two different types of neural networks. The 

sensitivity of other approaches such as knowledge base technique, support vector 

machine (SVM), convolution neural network (CNN), deep convolution neural 

network (DCNN), genetic algorithm based back-propagation Neural network (GA-

BPNN), CNN+LSTM, bat-rider optimization algorithm (BaROA DCNN ) and the 

proposed method  is  95%, 95%, 95%, 94.05%, 94.05%, 94.05%, 95%, and 100%, 

respectively, and the specificity of different approaches such as knowledge base 

technique, support vector machine (SVM), convolution neural network (CNN), deep 

convolution neural network (DCNN), genetic algorithm based back-propagation 

Neural network (GA-BPNN), CNN+LSTM, bat-rider optimization algorithm 

(BaROA DCNN ) and the proposed method is 81.52 %, 89.47%, 93.22%, 93.16%, 

93.08%, 93.05%, 93.9%, 99.9%. 

As a result, the suggested technique outperforms existing state-of-the-art techniques 

such as DCNN, SVM, knowledge base technique, GA-BPNN, BaROA DCNN, and 
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CNN+LSTM regarding accuracy, sensitivity, and specificity. The confusion matrix for 

the presented CNN model is also obtained and displayed in Figure 5.55. The confusion 

matrix summarizes the categorization of individual classes. The matrix's diagonals 

draw attention to the correctly classified classes. The inaccuracy in detecting 

arrhythmia in our suggested model is relatively low and may also be used for efficient 

ECG signal processing. Finally, compared to existing approaches documented in the 

literature, we attained better outcomes. 

 

Table 5.11 Description of common functions and components used in a deep 

learning Convolutional Neural Network (CNN) model 

Function Explanation 

Conv1D Used for conversion of 2-D to 1-D input information 

Dropout Used for prevention of over fitting problem 

Batch Normalization 

neural networks 
Reduces the internal correlation shift to accelerate deep 

MaxPooling1D 

domain signal 
Used for applying the max pooling function to a spatial 

Flatten dimensional 

data 
Used to convert multi-dimensional data input into one- 

Relu 

Used to perform linear rectification activation on input vector 

of the upper layer of neural network and produces the 

nonlinear output results 

SoftMax 

neural network output 
Activation function applied for multiclass classification 

 

 

Table 5.12 Parameters of implemented deep-learned CNN model 

Parameter Value 

Activation used ReLU 

Size of the input layer 187×1 

No. of classes 7 

Optimizer used Adam 

Regularization 0.1 

Learning rate(λ  0.001 

Batch size 32 

No. of epochs 15 
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Table 5.13 Summary of the classification outcomes using proposed          methodology 

Class Precision Recall F1 score Accuracy (%) 

Non-ectopic beat 0.99 0.98 0.98  

 

 

98% 

Supraventricular ectopic beat 0.74 0.85 0.79 

Ventricular ectopic beat 0.96 0.96 0.96 

Fusion beat 0.59 0.83 0.69 

Unknown beat 0.98 0.99 0.99 

 

Table 5.14 Performance of the proposed method in comparison to existing 

approaches  

Methods 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

knowledge-based approach [T. Teijeiro, P. 

Felix, 2018] 
85.07 95 81.52 

SVM [S. Raj and K.C Ray, 2017] 91.68 95 89.47 

CNN [X. Zhai and C. Tin, 2018] 92.44 95 93.22 

DCNN [U.R. Acharya, S. Lih. Oh, 2017] 92.34 94.05 93.16 

GA-BPNN [H. Li, D. Yuan et.al, 2017] 92.27 94.05 93.08 

CNN+LSTM [S.Lih. Oh et.al, 2018] 92.26 94.05 93.05 

BaROA –DCNN [D.K. Atal and  M. Singh, 

2021] 
93.19 95 93.9 

Deep learned CNN (Proposed Method) 99.12 100 99.9 

 

 



157 

 

 

Figure 5.49 Block diagram of proposed research work (a)Transmission of ECG 

using Thing speak cloud (b) Receiver 

 

  
Figure 5.50 Schematic diagram of the proposed 1D-CNN model 

Received ECG 

Signal  
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Figure 5.51 Comparison of accuracy of different classifiers 

 
 

 

Figure 5.52 Comparison of sensitivity of different classifiers 
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Figure 5.53 Comparison of specificity of different classifiers 

 

 

Figure 5.54 Classifications of the number of classes using the proposed deep-

learned CNN model 
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True Classes-- 

 

             Predicted Classes-- 

Figure 5.55 Confusion matrix of proposed deep- learned CNN classification 

model 

5.9 Flow Diagram of Water Cycle Optimization Algorithm (WCOA) 

 Create a random initial population using the WCOA's system parameters: dmax, 

Npop, max iteration, and Nsr (streams, rivers, and sea). The values of these factors 

used to generate the initialization vector key are shown in Table 5.15. 

 Calculations of every raindrop using the fitness function (FF), determine the initial 

flow intensity. 

 Streams lead to rivers, which lead to the sea. 

 If FFstream (stream fitness function) outperforms FFRiver (river fitness function), 

replace the river's position with the stream's location that provides better optimum 

solutions. 

 Replace the river's location with a sea if the FFRiver (fitness function of the river) 

is greater than the FFsea (fitness function of the sea). 

 If the evaporation situation is satisfactory, clouds form, the rainy process begins, 

and the value of dmax decreases. 
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 Determine whether or not the convergence criteria have been met. The procedure 

will be terminated if this condition is met; otherwise, it will return to step 3. 

Table 5.15 WCA algorithm parameters used to generate an IV (Initialization 

Vector) key 

Parameters Value 

Nsr 2 

Dmax 1  6 

Number of   Populations 25 

Total Number of iterations 100 

 

Below is an example of WCO being used to generate the best key 

Example of generated key >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

Columns 1 through 19 

1     0     1     0     1     0     1     0     1     1     0     1     0     1     1     0     0     0     0 

Columns 20 through 38 

1     1     1     0     1     1     1     0     0     1     0     0     1     1     1     1     0     1     1 

Columns 39 through 56 

0 1     1     1     1     1     1     0     0     1     1     0     1     0     1     1     0     0 

 

5.10 Complexity Time 

The complexity time of an algorithm is a measure of how it behaves regardless of the 

platform on which it is running. The whole populations are clustered [G.A. Khan et 

al., 2021] into numerous frames in water cycle optimization. Instead of evaluating the 

information on transmission architecture between all streams, we used this feature 

throughout the method. When it comes to finding a comprehensive solution, the data 

from the ruler of every group, such as rivers or seas, is taken into account. This 

resulted in a significantly more effective method in terms of computation complexity. 

The order of complexity is n (O(n)), where n represents the size of arrays and O(n) is 

the linear time. 

5.11 Performance Matrices 

The various parameters are calculated to analyse the suggested method in comparison 

to currently available techniques 

5.11.1 Avalanche Effect 

The avalanche effect is a phenomenon in which significant changes in output data can 
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be measured with minimal fluctuation in input data. In an ideal world, modifying one 

bit in the original signal would result in a 50% change in output, and we attained the 

findings, which were computed using Eqn. (5.11). 

                 
                                            

          
             (5.11) 

 
5.11.2 Mean Square Error (MSE) 

One of the most widely used quality reduction metrics is Mean Square Error (MSE). 

Consider two signals of size N*M, X and Y, and introduce the plain image, encrypted 

picture, and decrypted image for each signal [M.A. Nada and A.A. Suaad, 2016]. The 

MSE between two ECG signals is calculated using the Eqn. below (5.12).  

       
 

   
∑ ∑ ,  (𝑖  )   (𝑖  )-                                                     

   
   
     (5.12) 

When Y is equal to X, the MSE value is minimal, and when the Mean square  

error value is equivalent to 0, the value of Y is an exact duplicate of X. 

5.11.3 Number of Pixels Change Rate 

The Number of Pixels Change Rate (NPCR) is a technique for analyzing the 

difference between the input and encrypted signals. NCPR is expressed 

mathematically as Eqn. (5.13) [A. Alzubaidi and N.Al. Shakarchy, 2014]. 

 

      
∑ ∑    (   ) 

   
 
   

   
              (5.13) 

       𝑖 (𝑖  )  {
     (𝑖  )    (𝑖  )

   (𝑖  )    (𝑖  )
} 

I(i, j) and I'(i, j) are the initial and encrypted signals, respectively. We have completed 

the transmitted data at the output if the value of NCPR is now very big for the ideal 

encryption approach. 

5.11.4 Unified Averaged Changed Intensity 

The unified averaged changed intensity (UACI) analysis calculates the intensity 

change of the corresponding target signal's pixel location. If UACI has a high value, it 

can protect the encrypted approach from cyber-attacks. The Eqn. (5.14) is used to 

calculate it. 

 

      ∑
|   (   )     (   )|

                         (5.14) 
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         (𝑖  )      (𝑖  ) is the pixels value at i, j. 

 

5.11.5 Execution Time 

In seconds, it is the entire time consumed by the Electrocardiogram data during the 

encryption procedure. The execution time in MATLAB is computed using the tic and 

toc commands. In this study, we encrypt the ECG signal in the shortest period 

possible, 0.003 milliseconds. 

5.11.6 Frequency Test 

The total number of zeroes and ones for the entire sequence is the focus of the test. 

This test is used to see if the number of zeroes in the series is the same as expected in 

a random series. The main goal of this test is to determine how near the proportion of 

complete ones is to half value; the series should be equal. The passing of this test 

determines the test's entire worth. The test value that we computed is displayed in 

Table 5.16. 

5.11.7 Run Test 

The total number of runs shown in the sequence is the focus of this test. An 

uninterrupted series of the same number of bits is called a run. A run k has the same 

number of bits as the previous one and bounces with numerous opposite bits before 

and after. This test aims to see if the runs of different lengths of ones and zeros are as 

expected for a random sequence. This test determines the oscillation between zero and 

one or too rapid and slow. Table 5.16 demonstrates how we calculated the valuation 

of the passed test in this proposed work. 

Table 5.16 s h o w s  t h e  comparison of the proposed technique with traditional 

key generation approaches 

Algorithms Frequency Test Run Test 

Fibonacci Series 0.02 0.30 

Proposed Method 0.1814 0.52 

 

5.11.8 Comparison with Existing Approaches 

The proposed work uses 3-DES and water cycle optimization techniques for 

encryption and authentication. Using a variety of encryption and authentication 

schemes, we examined the model's optimum results. One-time padding (OTP) key is 

required for the encryption-authentication technique. A water cycle optimization 

approach was used to produce a 56-bit OTP key. In contrast to the existing work, the 



164 

 

output demonstrates that the stenographic verification system creates a key and offers 

sufficient security. Symmetrical key methods are recommended over asymmetrical 

key techniques for ECG data transfer security. Many encryption algorithms, such as 

AES, DES, triple data encryption standard (3-DES), Blowfish, Rivest–Shamir–

Adleman (RSA), and two fish-based encryptions, are available in the literature. Each 

of these algorithms has its own set of pros and limitations. 

In comparison to all of these approaches, AES delivers higher security. The triple 

DES, on the other hand, uses less CPU. Furthermore, the triple DES was designed for 

embedded applications, whilst the advanced encryption standard (AES) works well 

for hardware and software system implementation. Similarly, the triple data 

encryption algorithm is compatible and adaptable with the Internet - of - things (IoT) 

systems. 

Electrocardiogram subsystems occasionally use Bluetooth wireless protocol for the 

Internet of Things (IoT), and Bluetooth procedures are typically space and power 

restricted. Compared to AES-based techniques, 3-DES necessitates a significant 

storage and processing capacity. It is sometimes only appropriate for portable options 

(such as the Internet of Things system). In the suggested approach, we choose triple 

data encryption standard (3-DES) as encryption with IoT. However, advanced 

encryption standards (AES) should be investigated more in the future. 

Table 5.17 demonstrates the results of comparing the performance of the presented 

triple data encryption standard (3-DES) and water cycle optimization approaches 

(WCO) for authentication for the security of electrocardiogram (ECG) data in a 

variety of ways. Avalanche effect, mean square error, execution time, number of 

pixels change rate (NPCR), unified averaged changed intensity (UACI), and key 

analysis are all included in these tables. In comparison to previous work, the 

significance of this suggested methodology is that it gives minimal error while 

requiring less time consumption, a higher avalanche effect value, NCPR, and UACI. 

Table 5.17 compares the development of a 56-bit one-time padding key using the 

water cycle optimization technique to existing key generation strategies. At a 1% 

level of significance, the computed key p-value is displayed. The result demonstrates 

that the p-value for the proposed approach is higher than 0.01. Aside from that, the 

water cycle optimization technique generates a 56-bit random key that is accurate. 

The results in Table 5.17 show that the suggested strategy is superior to existing 
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approaches for biological signal security, as reported in the literature. 

Table 5.17 Comparison of the proposed technique to Existing Data Encryption 

approaches 

Methods Avalanche 

Effect 

MSE Execution 

Time 

NCPR UACI 

[K.Muhammad et.al, 2018] - - 0.67 99.6125 33.44 

[A. Kumar and G.G. Ramirez, 2018] - - 0.79 99.615 33.4658 

[R. Hamza et.al, 2019] - - 0.95 99.609 33.465 

[Z. Wang et.al, 2019] 50% - 0.0027 - - 

[J. Khan et.al (2020(a)] - - 0.28 99.6212 33.4406 

[J. Khan et.al, 2020(b)] - - 0.2277 99.6383 33.3516 

[L. Zheng et.al, 2020] 49.28% 0.498 0.005 100 30.686 

[A. Abdulbaqi          et.al, 2021] - - - 99.64 33.54 

Proposed Method 50.12% 0.4639 0.003 100 39.698 

 

5.12 Internet of Things 

A system of connected devices is known as the Internet of Things (IoT). These 

gadgets typically include an installed framework scheme and the capacity to interact 

online and with other equipment. Figure 5.56 shows the block diagram of IoT 

Devices. An IoT service is one of the main parts of an overall IoT system that 

connects numerous 'things.' The "things" that comprise IoT systems have such an 

intriguing implication: they are powerless to act independently. At the very least, they 

should be able to connect to other "things." The true power of IoT is only realized 

when objects connect to help, either directly or via other "things". The server 

functions as an undetected manager in such setups, capable of performing tasks going 

from primary data gathering to complex data processing. This toolkit is additionally 

included in MATLAB programming and is accessible for download from the math 

work. We logged in to this IoT with a user ID and password and uploaded the data, as 

shown in Figure 5.57, after which it was sent to the cardiologist for further 

investigation. 
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Figure 5.56 Block Diagram of IoT Devices 

 

An Internet of Things application framework is called "ThingSpeak" which offers a 

range of analysis, tracking, and response capabilities. Let's take a closer look at 

ThingSpeak. 

 

 
 

(a) 
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(b) 

 

(C) 

Figure 5.57 Framework of IoT (a) Login Id (b) Password (c) Upload the data 

 

5.13 Identification of ST Deviation 

The Transition region on an ECG is the region between the onset of ventricular 

depolarization and its conclusion. In other words, it is the distance between the QRS 
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complex endpoints and the starting of the T wave. The ST segment is the amount of 

time the cardiac muscle continues to contract to push blood out of the ventricular 

contraction. One of the most frequent ECG conditions brought on by ischemia is ST 

divergence (elevation or depression); The height and distress of the ST segment with 

a standard in the ECG signal are used to evaluate myocardial ischemia close to the 

implemented lead. Subendocardial infarction is characterized by depressed ST 

segments (or episodes), whereas transmural (sub-epicardial) ischemia is characterized 

by increased ST segments [A. Goldberger, 1981]. Figure 5.58 illustrates how the 

European ST-T database identified the ST- segment (Normal, Elevation) for e0103 

and the depressed signal for e0105. According to our analysis of ten records' total 

diagnostic beat counts, the records e0103, e0104, e0105, e0108, e0113, e0114, e0147, 

e0159, e0162, and e0206 have four, three, three, two, one, and one diagnosis beats, 

respectively. 

To assess each class' performance, we provided the average sensitivity and specificity 

for assessing advancement in the identification domain. Sensitivity and specificity are 

calculated using Eqns. (5.3) and (5.15). 

Sensitivity is a measurement of the number of positive instances, which can be 

calculated as 

Sensitivity (SE) = [TP/(TP+FN)] *100                      (5.3) 

True positive, true negative, false positive, and false negativity, respectively, are 

denoted by the symbols TP, TN, FP, and FN. 

However, specificity is a measure of the percentage of true negatives and is explained 

as 

             Specificity= TN/ (TN+FP)      (5.15) 

  

(a) Normal ST-segment (b) Ischemic (elevated) 
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(c) Ischemic (depressed) ST segment 

Figure 5.58 (a) Normal ST-segment of e0103 record of EDB (b) Ischemic 

(elevated) ST segment of e0103 record of EDB (c) Ischemic (depressed) ST 

segment of e0105 record of EDB. 

 

5.14 Comparison with Existing Approaches 

The isoelectric energy measurement function, which does not involve any 

complicated computations, is presented in this study as a new modified function for 

diagnosing ischemia. Using the entries mentioned above from the EDB database, the 

outcome of the methodology was contrasted to that of the existing technique. This 

dataset employs a classification scheme for ischemia pulses. Ischemic beats were 

expected to be present in every annotated record in the dataset. Many perspectives [N. 

Maglaveras et al., 1998] cannot be compared because they used different databases or 

used other outcome metrics or datasets. HMM [R.V. Andreao et al., 2004] produces a 

good classification for detecting ischemia episodes; it is worthless for non-invasive 

events. [M.G. Tsipouras et al., 2007] study on fuzzy logic Based systems are crucial 

for rule analysis' prognosis of infarction, but additional study is needed to enhance 

detection efficiency. The researchers' findings are as follows: both the sensitivity (SE) 

and specificity (SP) are, on average, 91.2% and 90.9%. 

In this study, the researchers found that the average sensitivity (SE) and specificity 

(SP) were 81% and 84%, respectively. This is demonstrated by the genetic algorithm 

[C. Papaloukas et al., 2004], the support vector machine [J. Park et al., 2012], and 

kernel density estimation [S. Don et al., 2013]. Cardio dynamics gram is a model 

technique for the timely detection of heart failure [C. Wang et al., 2016]. Standard 12-

lead ECG reveals myocardial ischemia. A recently designed stochastic learning 

technique extracts cardio dynamic information from ST-T segments. Examining 
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patients with ischemia using the CDG method results in a sensitivity of 90.3% and a 

specificity of 87.8%. [A.K. Manocha et al., 2016] proposed a technique for predicting 

ischemia events using statistical variables extracted from ECG ST-segment 

anomalies. In ischemia events, the window categorization algorithm was created to 

remove erroneous beats. The coefficient of variation (COV), kurtosis, and form factor 

are utilized to locate ischemia events. The results show an average sensitivity (Se) of 

98 percent and a positive predictivity (+P) of 97 percent for 90 records from the EDB 

collection. [K. Nakajima et al., 2018]. Researchers reprogrammed an artificial neural 

network using a Japanese prospective longitudinal dataset to identify ischemia. 

Patients who seemed to have neither cardiac rehabilitation nor old infarction had an 

AUC of 0.88 for version 1.1 (sensitivity 88%) and 0.88 for version 1.0 (specificity 

100%) (p =0.0093): Version 1.1 produced 0.1 to 0.7 transitional ANN probability. 

The T-wave area curve was proposed by [R. Li et al., 2021] as a tool for diagnosing 

MI (TWAC). By observing and analyzing clinical data, it was shown that there is a 

significant link between TWAC morphology and MI. The sensitivity, specificity, and 

accuracy of the presented technique in this study for identifying MI are 84.3, 83.6, 

and 84%, respectively. Convolutional neural networks (CNN) were proposed by 

[M.R. Bigler et al. 2021] as a deep learning process for extracting data-derived 

characteristics and acknowledging normal shapes. Consequently, Convolutional 

neural networks provide a balanced viewpoint on systemic diseases such as ischemia. 

The following results were obtained by the researchers utilizing cardiac stability or 

blockage as a criterion for the absence and presence of myocardial ischemia: 

sensitivity is 80%, and specificity is 92% at a frequency (cut-off) of 0.279 mV. This 

study utilized ST-segment deviations to calculate the isoelectric energy measuring 

function; however, additional ST-segment morphological features might also be 

applied. The suggested method has two significant advantages. The technique can be 

employed to evaluate the outcomes. This is essential for developing a system of 

clinically supported medical decision-making. It may be beneficial for CCU patients 

who lack recommendations. Secondly, instead of a complicated algorithm, 

straightforward analysis based on isoelectric energy is used, and the features extracted 

are then transferred to physicians via telecardiology for appropriate heart condition 

analysis that has yet to be identified in the current state of artworks. The average 

sensitivity (SE) is 98.5% after using this recommended approach. The average 

predictivity (P) is 98.3%, in contrast. These outcomes perform better than other 
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techniques discussed in the literature, as given in Table 5.18. 

Table 5.18 shows the comparison of the outcomes of ischemia detection using the 

proposed method versus existing approaches 

Methods Sensitivity (%) Specificity (%) 

M.G. Tsipouras et.al, 2007 91.2 90.9 

C. Papaloukas et.al, 2004 81 84 

C. wang et.al,   2016 90.3 87.8 

A.K. Manocha et.al, 2016 97.71 96.89 

M.R. Bigler et.al,          2021 80 92 

Proposed Method 98.5 98.3 

 

 


