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CHAPTER 5 

STABILITY AND CONVERGENCE ANALYSIS 

The numerical stability plays a major role in checking the applicability of the method. The order 

and rate of convergence provide useful insights into the efficiency of the method while calculating 

numerical approximations. The stability analysis and convergence properties are discussed 

hereunder: 

5.1 STABILITY ANALYSIS  

Stability analysis is a study of how well a numerical solution behaves when applied to a linearized 

system. The numerical method is said to be stable if a small perturbation does not cause divergence 

from the solution (Mittal and Rohila, 2016). Further, an algorithm for solving a linear partial 

differential equation is said to be stable when the total variation of the numerical solution at a fixed 

time remains bounded as the step size goes to zero. Also, by analyzing the error and stability of a 

numerical technique, one can control the step size adaptively.  

The stability of a time-dependent equation: 
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



,         (5.1) 

where C is a function of both x and t and d is a spatial differential operator, is dependent upon the 

eigenvalues of the coefficient matrix of space discretization Eq. (5.1). Using the quintic Hermite 

collocation method, Eq. (5.1) is reduced into a set of ordinary differential equations in time:   
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where C  is an unknown vector of the functional values at the interior grid points, B contains 

boundary values and nonhomogeneous part, and [A] is the coefficient matrix obtained after 

discretization. The detail of the same has already been explained in section 4.9 of chapter 4: 
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Nonlinear model-1 and 2,    
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Nonlinear model -3,  
2
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where 1,2,...,6, 1,2,...,q k N  and 1,2,3,4r  .  

It is well-known that the stability of Eq. (5.2) depends upon the stability of the numerical technique 

that is adopted to solve it. Any stable numerical technique for time discretization may not attain 

convergent solutions if the corresponding system of ordinary differential Eq. (5.2) is unstable.  

Mittal and Rohila (2016) explained in their study that the stability of Eq. (5.2) depends upon the 

Eigenvalues of the coefficient matrix A. Suppose i  to be the Eigenvalues of the coefficient matrix 

A.  

According to Korkmaz and Dag (2011), when t approaches infinity, for the stable solution X one 

must have:  

(a)  If all the Eigen values are real,  2.78 0;it     

(b)  If all the Eigenvalues have only complex components,  2 2 2 2;it     and  

(c)  If all the Eigen values are complex, it  should be in the region Figure 5.1.  

 

The eigenvalues of linear model-1 and 2, linear model-3, and linear model-4 for 

51, 0.0001N t    are plotted in Figures 5.2 to 5.4 respectively. Besides, the eigenvalues of the 

nonlinear model-1 and 2 and nonlinear model-3 are presented in Figures 5.5 and 5.6 respectively 

for the case when   

0 0 0

106.8, 51, 0.0001

0.57, 0. ,
1-

0.950336, 7.29, 0.00 75 , ,
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C N t
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






   

     

From Figures 5.2 to 5.6, all the eigenvalues are complex and lie in the stability region. Hence, the 

system in Eq. (5.3) to Eq. (5.7) is stable. 
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Figure 5.1 Stability region when eigenvalues are complex. 

 

Figure 5.2 Eigenvalues of matrix A for linear model-1and2 with N=51, ∆t=0.0001
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Figure 5.3 Eigenvalues of matrix A for linear model-3 with N=51, ∆t=0.0001
 

 
Figure 5.4 Eigenvalues of matrix A for linear model-4 with N=51, ∆t=0.0001
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Figure 5.5 Eigenvalues of matrix A for nonlinear model-1and 2 with N=51, ∆t=0.0001

 

 
Figure 5.6 Eigenvalues of matrix A for nonlinear model-3 with N=51, ∆t=0.0001
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5.2 CONVERGENCE ANALYSIS 

A numerical method is said to be convergent when the chosen step size diminishes or approaches 

zero, subsequently, the approximate numerical solution attained using the algorithm becomes the 

exact solution (Kumar and Kumari, 2019). 

The mechanism of displacement washing of a packed bed of porous, compressible, and cylindrical 

particles, such as fibres, can be characterized mathematically with the help of the axial-dispersion 

model, viz:      
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It can be written as: 
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For boundary conditions: 

1 2 0
c

k c k
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
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       at       0z    for    (0, ]t T ,    (5.10a)          

3 4 0
c

k c k
z


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
       at      1z     for    (0, ]t T ,    (5.10b) 

and initial condition: 

0( ,0) ( )c z c z .        (5.11)                                                                                                                      

where (0, ] ( , ) (0,T]D T a b    and ( , )c c z t  are smooth functions z   . 

Here ', , ,
i

k s   are real numbers. 

5.2.1 Discretization Process  

The trial function and discretization process are discussed in Chapter 3. Using this approximation 

technique, the discretized form obtained from equations Eq. (5.8), Eq. (5.10a), Eq. (5.10b), and 

Eq. (5.11) by using an approximate solution becomes:  
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where 2,3,4,5r   (interior collocation points chosen as discussed above) and 1,2,...,k N  

(number of elements). 
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The residuals are set to zero at collocation points and the system of equations Eq. (5.12), Eq. 

(5.13a) and Eq. (5.13b) can be written as: 
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Figure 5.7 Matrix structure for the system of equations obtained using QHCM 

 

 

The system of equations defined above can be expressed as:                             

 Ab d  ,         (5.15)                                                    

where A is a matrix of the order 4 4N N containing collocation equations with boundary 

conditions at z=0 and z=1, b is the column matrix of collocation points of order 4 1N   and d is the 

column matrix of the differential operator of order 4 1N  .  

The obtained matrix structure is solved numerically by using the backward difference formula 

(BDF) with the algorithm developed for MATLAB ode 15s.   

5.2.2 Time Discretization 

In this process, the time domain is divided into the finite number of mesh points say (M) with a 

uniform step size t  as given below: 
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 0 1 2,0 , , ......t Mt t t t T       such that    TM t     and    
1M Mt t t    

 

Thereafter, using Euler implicit method in problem Eq. (5.8) can be discretized in the time domain 

as given below: 
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 
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, (5.16)                 

Subject to the initial and boundary conditions 

0( ,0) ( )C z C z ,  

From Eq. (5.10a) and Eq. (5.10b) 

1 1(0, ) (0, )l lC t t     where    0 1l M    

 

1 1(1, ) (1, )l lC t t   where  0 1l M    

where  1( , )lC z t   is the numerical solution of Eq. (5.8) to Eq. (5.10b) at ( 1)thl   time level. 

5.2.3 Convergence criteria  

Lemma 1 [Kumar and Kumari (2019)]: Maximum Principal: Let the solution ( , )c z t  of Eq. (5.8) 

be a smooth function with (0, ) 0c t   and (1, ) 0c t  . Then ( , ) 0c z t   for all ( , ) (0,1)z t   then 

we have ( , ) 0c z t   for all ( , ) (0,1)z t  . 

Lemma 2 [Kumar and Kadalbajoo (2011)]: Let ( , )c z t  be the solution of Eq.(5.8) defined on 

( , ) (0,1)z t   then it is bounded by some K such that  ( , )c z t K  for all ( , ) (0,1)z t  . 

Proof: As Ross et al. (2008) have proved the result ( , )c z t  defined ( , ) (0,1)z t  given by: 

              ( , ) (0, ) tc z t c t K    for (0, ]t T  

Then      ( , ) (0, ) ( , ) (0, ) tc z t c t c z t c t K     

Or          ( , )c z t K  when (0, ) tc t K  is bounded by some constant K. 

Lemma 3: If  Lemma 1and 2 are hold , the bound of the derivative of the function ( , )c z t with 

respect to   t is given as:   
u

K
t





for all  ( , ) (0,1)z t  . 

Proof: For the proof of the Lemma the readers can refer to available in Chakravarthy and Kumar 

(2019). 
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Lemma 4 [Chakravarthy and Kumar (2019)]: The bound for the ith derivative of ( , )c z t  with 

respect to   z is given as: 

                          [1 exp( (1 ) / )]
i

i

i

u
K z

t
  

   


 for all ( , ) (0,1), 0,1z t i   

The local error measures the contribution of each time step to the global error of the time 

discretization given above. 

Lemma 5: (Local error estimate) If    
i

i

u
K

t





 for all ( , ) (0,1)z t  , 

Then the local error estimate in temporal direction is given as 
2

1 ( )je K t    

  where 1 1 1( , ) ( , )j j je C z t c z t     

Proof:  From Eq. (5.16) we have 

2

1

1 2

( , ) ( , )
( , ) ( , ) ;( , )

j j

j j t

C z t C z t
C z t C z t t t t C z t

z z
  





 
    

 
         (5.17) 

Also 
1

1 1( , ) ( , ) ( , ) ( ) ( , ) ;( , )
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t

c z t c z t tc z t t c z d z t  


                         (5.18) 

Substituting the value of ( , )t jc z t from Eq. (5.17) in Eq. (5.18) one gets: 

2

1( , ) ( , ) [ ( , ) ( , ) ] ( ) ;( , )j j zz z tc z t c z t t c z t c z t c O t z t                         (5.19) 

From Eq. (5.17) and Eq. (5.19) one gets: 

2

1 1 1( ) ( ) ; (0) (1) 0j j jtL e O t e e        

Using the results of maximum principle given by Clavero et al. (2003), we obtain the desired result, 

i.e.,      
2

1 ( )je K t    where  1 ( , ) ( , )je c z t C z t    

Theorem 1. (Global error estimate) Let  nE  is the global error estimate in the temporal direction 

then show that  
nE K t


     where K is a positive constant. 

Proof: As  1

1

n

n i

i

E e



   

Also  1 1 2

1

........
n

n i m

i

E e e e e    
 

      

then using Lemma 5, we get  
2 2 2

1 1 1 1( ) ( ) ........ ( )nE K t K t K t 
        
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2

1 1 1 1( ) ( )( )nE K n t K n t t K T t 
        , since n t T   

Implies  
1nE K t 

   for  1K T K  

Therefore, the proposed numerical scheme is uniformly convergent of first order in temporal 

direction. 

Theorem 2. Let ( )c z be the collocation approximation from space of quintic Hermite interpolation 

polynomial to the solution ( )c z of the differential equation such that 
6( ) [0,1]c z C . Then the 

uniform error estimate is given by: 

                           4 6( ) ( ) ln ( )c z c z Kn n


   where K is a positive constant 

Proof: Let ( )nc z  be the unique quintic Hermite interpolation for boundary value problem. The 

two cases arise when the mesh is divided into two regions [0,1-t] and [1-t,1].  

For derivative of quintic Hermite polynomial Hall’s error estimate (Hall, 1968) is used as given 

below: 
6 (6)( ( ) ( )j j

n jD c z c z h c 

 
  ;       0 5j   

where, 

0 1 2 3 4 5

1 5 1 1 1 1
, , , , ,

46,080 30,000 1920 120 10 2
            

Now,   
'' '' ' '( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i n i i n i i n i i n ic z c z c z c z c z c z c z c z           

  

It follows from Lemma 4 
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4 5 6 6

2 1 0( ) ( ) ( )(1 exp( (1 ) / )i n i ic z c z h h h z                         

4 2
65

( ) ( ) (1 exp( (1 ) / )
80 24 375 576

i n i i

h h h
c z c z z

  
  

 
         

 
      (5.20) 

Case 1: Let t=1/2, In this case, the mesh is assumed to be uniform with spacing h(1/n) and 

1
( / ) ln( )

2
n    

Gives  
1 ln( )K n    then from Eq. (5.20) one gets: 

4 6( ) ( ) ln ( )i n ic z c z Kn n                                                                (5.21) 

Case2: Let  ( / ) ln( )t n  , In this case, the mesh is piecewise uniform with space size 2(1 ) /t n  

in the interval [0,1-t] and 2 /t n  in [1-t,1].  
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For 0
2

n
i   then by using Lemma 4 in the interval [0,1-t], one gets ( )ic z K . 

Also, from Eq. (5.20), one gets:  

4( ) ( )i n ic z c z Kn                                                                       (5.22) 

If  
2

n
i n  , then we have  

2 ln( )t n
h

n n




  . Then from Eq. (5.20), one gets: 

4 6( ) ( ) ln ( )i n ic z c z Kn n                                                      (5.23) 

Also, with the system of equations obtained, one gets: 

Ab d                                                                                            (5.24) 

From Eq. (5.15) and Eq. (5.24) 

( )A b b d d                                                                            (5.25) 

Also    4 6ln ( )d d Kn n


      and  1A K


  

 Then from Eq. (5.25), one gets: 

4 6ln ( )b b Kn n


   

And 
6

1

( ) ( ) [ ( ) ( )] ( )i

i

c z c z b z b z H z


    

4 6

1
( ) ( ) max ( ) ( ) ln ( )

i n
c z c z c z c z Kn n

  
     

Using triangular inequality, one gets: 

4 6( ) ( ) ln ( )c z c z Kn n


   

Hence the result is proved. 

5.3 SUMMARY  

In this chapter, the stability of the numerical technique is explained based on Eigenvalues. The 

Eigenvalues for linear and nonlinear models are complex and lie in the stability region. Besides 

this, the convergence analysis of the method is also discussed for uniform error estimates.  

 


