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CHAPTER 4 

MATHEMATICAL MODELS 

The use of mathematics in solving real-world problems has become widespread mainly due to the 

increasing computational ability of digital computers and computing methods, both of which have 

simplified the processing of lengthy and complicated problems. In this chapter different 

mathematical models related to diffusion dispersion are briefly discussed.  

4.1 MATHEMATICAL MODELS 

According to Dumont (1986), mathematical modelling processes are generally non-linear by 

nature and depend on multi-variables. Mainly, there are three approaches of modelling: physical, 

process and statistical modelling, that describe the pulp washing process. The present study focuses 

on the physical models. These models serve the purpose of describing the washing process in terms 

of mass transfer and fundamental fluid flow principles, which take place at a microscopic level 

during the process of displacement washing of a pulp fiber bed. The longitudinal dispersion, mass 

transfer coefficients, and porous structure of fiber are the key parameters involved in these models 

(Kim, 1989).  

An overview of various models used to describe pulp washing has been presented by Pekkanen 

and Norden (1985). Extensive study has been carried out by Lapidus and Amundson (1952); Kuo 

(1960); Brenner (1962); Pellett (1964); Sherman (1964); Grähs (1974); Neretnieks (1976); Perron 

and Lebeau (1977); Raghavan and Ruthven (1983); Viljakainen (1985); Kim (1989); Trinh, et al 

(1989); Al-Jabari, et al (1994); Towers and Scallan (1996); Kukreja (1996); Potůček (1997); 

Sridhar (1999); Liao and Shiau (2000); Szukiewicz (2000); Liu and Bhatia (2001); Tervola (2006); 

and Kukreja and Ray (2009). Thee pulp washing models in the form of BVPs with different initial 

and boundary conditions were studied and the effect of various industrial parameters on washing 

operation was discussed.  

Kukreja (1996) and Ganaie et al. (2014) considered some basic assumptions for a systematic 

investigation of a porous structure pulp fiber bed as detailed below: 

 Macroscopically uniform bed 

 Uniform cylindrical size of particles 

 The Diameter of the particle fibre is taken small in comparison with the axial distance 
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 Independence cake thickness and radius of particle from the intra-fiber diffusion coefficient 

 Interrelation of the particle porosity, consistency of fibers, and bed porosity. 

Besides, the washing process is mainly associated with the diffusion-dispersion phenomenon. 

Okhovat et al. (2014) revealed that sufficient efforts are put on by the researchers to examine the 

behavior of the diffusion-dispersion phenomenon experimentally or through simulation. Many 

studies were conducted by the researchers to simulate the models used to express the process of 

the pulp and paper industry with advanced techniques (Arora et al., 2006). This has aided in 

improving the efficiency the industry. Keeping this in view and to further benefit the industry, the 

present study endorses the technique of QHCM to obtain the numerical solution of the one-

dimensional linear, non-linear, and 2-dimensional models of pulp washing.  

4.2 LINEAR MODEL - 1 

Consider a diffusion-dispersion problem with Dirichlet’s boundary conditions as: 

2

2L

c c c
D u

t x x

  
 

  
,        (4.1) 

To keep the mathematical complexity as small as possible, the boundary conditions are defined at 

two points only. One at the entry level of the bed (x = 0) and the other at the exit level of the bed 

(x = L). Between 0 and L, no condition is imposed. 

At the initial stage, the bulk fluid concentration is assumed to be equal to inlet solute concentration 

or the concentration of solute at the inlet is taken equal to the concentration of solute in the wash 

liquor. In other words, at the entry level of the bed, no loss of solute is assumed from the bed with 

the introduction of displacing fluid.  

At the exit level, an unacceptable conclusion is avoided by assuming that the concentration of 

solute passes through a minimum (or maximum) in the interior of the medium, 

0

0

c c at xe
c

at x L
x







 


 



 for all t >0,    (4.2) 

where c = c (z, t) is the concentration of solute in liquor, the point from where the displacing fluid 

is introduced is at distance (x), time (t), axial dispersion coefficient (DL), average interstitial 

velocity (u), and cake thickness (L) are the parameters.  

The initial concentration of fluid is considered the same as the concentration of inlet solute. 
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i.e., c (x, 0) = c0.        (4.3)  

where c0 is the inlet solute concentration. 

The first task in solving the model equation is the conversion of an equation into dimensionless 

form and then transforming the equation by using a suitable variable transformation. The reason 

behind this conversion is to give this equation a more flexible mathematical treatment. 

The dimensionless form of the model and boundary conditions is:  

2

2

1C C C

T Pe X X

  
 

  
         in    (0,1) ,     (4.4)                                                    

Boundary conditions: 

0 0

0 1

C at X

C
at X

X

  


 
   

 for all 

 

0T  ,   (4.5)

 

Initial condition: 

( ,0) 1C X  .         (4.6) 

where 
0

s

s

c c
C

c c





 is the dimensionless concentration of solute, ,

ut x
T X

L L
   are dimensionless 

time and axial distance respectively. Also, 
L

uL
Pe

D
  (the dimensionless parameter) is a ratio of 

advection to diffusion known as the Pe. It is a key parameter that influences the chemical reaction, 

and the optimum choice of the Pe is considered for obtaining good results. 

Grähs (1974) solved the above problem with OCM and found the analytic solution to this problem. 

However, Arora et al. (2005) efficiently solved the model with the OCFE method with a 

Lagrangian basis and achieved better than the results obtained through OCM. Besides, Gupta et 

al. (2012) used CSCM to solve the model and experienced improvement in the results as compared 

to OCFE. In a study, Mittal et al. (2013) obtained the numerical solution to this problem with 

CHCM and found the technique more suitable than OCFE. While solving the same model using 

QHCM and comparing the results with that of CHCM, Kaur et al. (2018) obtained better results 

and in less CPU time. 
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4.3 LINEAR MODEL - 2 

Brenner (1962); and Sherman (1964) proposed the procedure of a mathematical model for 

displacement washing as detailed below: 

2

2L

c c c
D u

t x x

  
 

  
,        (4.7)  

At the entry level, the difference in concentration of solute in liquor and weak wash liquor 

multiplied by the ratio of axial dispersion coefficient to the interstitial velocity is equal to the 

concentration gradient at the inlet. 

However, Brenner (1962) imposed following boundary conditions at the entry (x = 0) and exit of 

the bed (x = L).  

( ) 0

0

c
u c c D at xe L x

c
at x L

x








  




 


 for all 0t  .    (4.8)  

The initial condition is the same as the linear model 1.  

 

The dimensionless form of the above-given model is    

 
2

2

1C C C

T Pe X X

  
 

         
in   

  
(0,1)  ,     (4.9)   

              

with boundary conditions as: 

0

0 1

C
PeC at X

X
C

at X
X








 



 



 for all 0T  .    (4.10)                                 

Potůček (1997); Singh et al. (2008); and Kukreja and Ray (2009) have studied the model of pulp 

washing in detail by considering the present equation. Tervola (2006) explained that the advection-

dispersion model presented by Brenner (1962) is perhaps the most acceptable for practical 

applications among all mathematical models described for pulp washing. The analytic solution of 

the above-discussed problem derived by Brenner (1962) is given as: 

 

For small values of Pe:  



53 
 

 

2
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1
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e
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  


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


 

 

     
      

      
  .  (4.11)                                

For large values of Pe: 

 
2

2

2

1 (1 )
1 erfc (1 ) 3 (1 ) exp

2 4 2 4

1
(3 4 ) (1 ) exp( ) (1 )

2 2 4 4

e

Pe Pe Pe T PeT
C T T

T T

Pe Pe Pe
T T Pe erfc T

T




       

     

    
    

    

    
   

    

  (4.12) 

In a study, Arora et al. (2005, 2006) solved this problem numerically with the OCFE technique 

and validated the results with an analytic solution. Likewise, Gupta and Kukreja (2012) and Ganaie 

et al. (2013) explained the model problem using CSCM and CHCM respectively and found 

superior results. When Kaur et al. (2021) solved this model equation with QHCM, the results 

derived were found to be better than those obtained via CHCM. 

4.4 LINEAR MODEL - 3 

Arora et al. (2006) studied the pulp fiber bed washing model based on the phenomena of 

longitudinal mixing and assumed it to be governed by the equation (dimensionless form) given as 

2

2

1C C C Bi
C

T Pe X X Pe

  
  

  
,      (4.13) 

where T is the time from commencement of displacement, X is the distance from the point of 

introduction of displacing fluid,  ,C C X T  is solute concentration in liquor, 

2

L

kL
Bi

D
  and 

represents the Biot number (Bi) which relates to the mass transfer resistance inside and at the 

surface of the body whereas / (1 )     is the ratio of the volume available for flow to the total 

volume and   represents the porosity. 

The boundary and initial conditions are the same as Linear model-1. 

Zheng and Gu (1996) obtained the exact solution which is given hereunder: 
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21 (1 ) (2 1)
1 exp

2 42
exp

3 (1 )
exp( )

2 2

e

Pe T PeT Pe T T
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TTBiT
C

Pe Pe PeT Pe T
Pe erfc

T



    
          
  

     
        

  
  




  

. (4.14) 

Besides, Arora et al. (2006) compared the relative error of the OCM and OCFE methods by using 

the above model and observed that both the error norms are decreasing with the increase in the 

number of elements. Some other authors like Gupta and Kukreja (2012); Ganaie et al. (2013); and 

Robalo et al. (2013) solved the model with CSCM, CHCM, and moving finite element methods 

respectively for achieving improved results in less CPU time. 

4.5 LINEAR MODEL - 4 

The diffusion-dispersion model involving retardation coefficient is given as: 
2

2

1
d

C C C
R

T Pe X X

  
 

  
,       (4.15)  

The boundary and initial conditions are same as given in linear model-1.  

Liao and Shiau (2000) derived the analytic solution for this problem. Roininen and Alopaeus 

(2011) also applied the moment method to solve the model. Also, Arora et al. (2006, 2014) solved 

this model using OCFE and presented the relative error of the numerical solution for different 

values of Pe and dR . It was observed that for better washing, the retardation coefficient (removal 

rate of adsorbed solute on the particle surface) must be greater than 1.  

After validating the results for linear models, the present technique is applied to solve the non-

linear models, which are used to describe the effect of some important parameters on the washing 

process. 

4.6 NONLINEAR MODEL - 1 

Consider a non-linear equation expressing the behavior of miscible liquids during diffusion-

dispersion phenomena. The washing behavior of pulp fibers in the one-dimensional transport 

phenomenon of porous media involves axial dispersion and molecular diffusion. Kukreja (1996) 

explored the transport equation describing material balance across the bed in one dimension is 

defined as: 
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2

2

(1 )
L F

c c c n
D u C

x x t t





    
  

   
,      (4.16)                                   

Here, the first term represents diffusion dispersion, and the other terms represent convective flow, 

the concentration gradient of fluid, and the concentration gradient of particles respectively. 

Mathematically, u and DL are functions of x, while c and n and functions of both x and t and c and 

n are the concentration of solute in liquor and fiber respectively. It is assumed that the deposition 

rate of solute is of second order in the forward direction and detachment rate is of the first order 

in the reverse direction.  

The boundary conditions of this model are considered as same that of linear model-2.  

Initially, bulk fluid concentration is taken equal to inlet solute concentration, i.e., 

 ,0 ( ,0) ic x n x c   for 0 /x L u  .     (4.17) 

A non-linear Langmuir adsorption isotherm is considered in this model.  

The Langmuir isotherm- Fogelberg and Fugleberg (1963) gives detailed information on non-linear 

Langmuir type adsorption isotherm for equilibrium between the solute concentration on the fibers 

and in the liquor. This isotherm assumes that the deposition (adsorption) rate is second order in the 

forward direction and the detachment (desorption) rate is first order in the backward direction, i.e.,

  

 1
2i

F

k c n
N n k n

C t


  


,       (4.18) 

at equilibrium, it simplifies to   

0

01

A c
n

B c



.         (4.19) 

where 0
i

F

kN
A

C
  and 0

F

k
B

C
 are Langmuir constants. 

The dimensionless form of the model is: 

  

2
0

2 2

0 0

1

1

F

s s

C AC C C C

Pe T X TX B c C c c

   
  
       

,   (4.20) 

The boundary conditions in the dimensionless form are: 
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0

0 1

C
PeC at X

X

C
at X

X

 
  


  

     

for all 0t  ,    (4.21) 

The initial condition is: 

( ,0) 1C X       at   0T  ,       (4.22) 

where 
0

s

s

c c
C

c c





 is the dimensionless concentration of solute in liquor, 

0

s

s

n c
N

c c





 is the 

dimensionless concentration of solute in fiber,  ,
ut x

T X
L L

   are dimensionless time and axial 

distance respectively. Also, 
L

uL
Pe

D
  is the Peclet number and / (1 )     is the ratio of the 

volume available for flow to the total volume and   represents the porosity. 

Arora et al. (2005) efficiently solved the model with the OCFE method with a Lagrangian basis. 

Besides, Gupta and Kukreja (2012) used CSCM to solve the model and experienced improvement 

in the results than OCFE. Thereafter, Mittal et al. (2013) obtained the numerical solution to this 

problem with CHCM. Besides, Kaur et al. (2021) solved this model using QHCM and compared 

the results with CHCM. The results achieved were effective and in less CPU time. 

4.7 NONLINEAR MODEL - 2 

The flow of external fluid through a packed bed of fiber based on axial dispersion and particle 

diffusion is described by a one-dimensional dispersion plug flow model (Potůček, 1997). The 

mathematical equation of the model is as follows: 

2

2

1
L F

c c c n
D u C

x t tx





     
    

    
,      (4.23)  

with boundary conditions same as considered in the linear model-1. The initial condition and 

adsorption isotherm are the same as considered in nonlinear model-1 

The dimensionless form of the model is: 

  

2
0

2 2

0 0

1

1

F

s s

C AC C C C

Pe T X TX B c C c c

   
  
       

.   (4.24)
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The initial and boundary conditions (dimensionless) are the same as linear model-1. Kumar et al. 

(2010) explored this model with the technique of ‘pdepe’ solver in MATLAB and proved that the 

results derived are the same as the nonlinear model-1. However, Mittal and Kukreja (2015) solved 

this model using CHCM and proved that the numerical results of exit solute concentration for 

nonlinear model-1 are better than this model.  

4.8 NONLINEAR MODEL - 3 

In this case, the nonlinear model-1 is considered along with linear adsorption isotherm. The linear 

isotherm assumes that point-wise equilibrium inside the particle, i.e.,  

 
n kc .         (4.25) 

Some authors like Brenner (1962); Sherman (1964); Potůček (1997); Kumar et al. (2010); and 

Ganaie et al. (2013) also used linear adsorption isotherm for finding solutions to the model.  

The dimensionless form of the model is: 

2

2

1 C C C C
k

Pe T X TX


   
  
  

.      (4.26) 

Kumar et al. (2010); and Ganaie et al. (2013) solved this model with “pdepe” solver and CHCM 

respectively. 

4.9 DISCRETIZED FORM OF MODELS 

The linear and non-linear model equations along with initial and boundary conditions are solved 

by discretizing the dimensionless form of the model. Discretization is a process in which the 

differential equation reaches the true solution at the collocation points. In this process, the 

approximate function using the quintic Hermite polynomial as explained in chapter 3 is derived 

and the diagonalized form of different models are given hereunder: 

4.9.1 Discretized Form of Linear Model - 1 

6 6 6
3( 1)

3( 1) 3( 1)2
1 1 1

1 1
( ) ( ) ( )

q k k k k
q r q k q r q k q r

q q qkk

da
H u a H u a H u

dt hPeh

 

   

  

     , (4.27)             

 

where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  
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The boundary condition at initial point x = 0, i.e., X = 0 gives  

6

1

(0) 0k
q q

q

a H


 
1 0a  ,       (4.28)  

The boundary condition for the element at x = L, i.e., X = 1 gives 

'
6

3 23( 1)
1

1
(1) 0 0k

q mq m
qk

a H a
h  



   ,     (4.29) 

4.9.2 Discretized Form of Linear Model - 2 

6 6 6
3( 1)

3( 1) 3( 1)2
1 1 1

1 1
( ) ( ) ( )

q k k k k
q r q k q r q k q r

q q qkk

da
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 

   

  

     , (4.30)                     

where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  

The boundary condition at initial point x = 0, i.e., X = 0 gives  

6 6

1 11

1
(0) (0) 0k k

q q q q

q q

Pe a H a H
h 

   
1 2 0Pea a  ,   (4.31)                                                        

The boundary condition for the element at x = L, i.e., X = 1 gives 

'
6

3 23( 1)
1

1
(1) 0 0k

q mq m
qk

a H a
h

 

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4.9.3 Discretized Form of Linear Model - 3 
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  (4.33)   

         

where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  

The boundary condition at initial point x = 0, i.e., X = 0 gives  

6

1

(0) 0k
q q

q

a H


 
1 0a  ,       (4.34) 

The boundary condition for the element at x = L, i.e., X = 1 gives 
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 

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4.9.4 Discretized Form of Linear Model - 4 

6 6 6
3( 1)

3( 1) 3( 1)2
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     , (4.36)                       

 

where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  

 

The boundary condition at initial point x = 0, i.e., X = 0 gives  

6
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q
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The boundary condition for the element at x = L, i.e., X = 1 gives 
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4.9.5 Discretized Form of Non-Linear Model - 1 
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where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  

The boundary condition at initial point x = 0, i.e., X = 0 gives  
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q q q q
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1 2 0Pea a  ,    (4.40)                                                            

The boundary condition for the element at x = L, i.e., X = 1 gives 

'
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1
(1) 0 0k

q m q m
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4.9.6 Discretized Form of Non-Linear Model – 2 
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, (4.42)          

where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  

 

The boundary condition at initial point x = 0, i.e., X = 0 gives  

6

1

(0) 0k

q q

q
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
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1 0a  ,       (4.43) 

The boundary condition for the element at x = L, i.e., X = 1 gives 
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4.9.7 Discretized Form of Non-Linear Model - 3 
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where 2,3,4,5r   (interior collocation points) and 1,2,...,k N  (number of elements)  

The boundary condition at initial point x = 0, i.e., X = 0 gives  

6 6
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1
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q q q q

q q

Pe a H a H
h 
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1 2 0Pea a  ,   (4.46)                                                            

The boundary condition for the element at x = L, i.e., X = 1 gives 

'
6

3 23( 1)
1

1
(1) 0 0k

q mq m
qk

a H a
h  



   .     (4.47)         

By the technique of QHCM, the above system of linear and non-linear PDEs is reduced to the 

system of ODEs. The equations are written in the form as: Du Mu  
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where D is the differential operator and u is the vector of collocation solutions of order 4N. M is 

the square matrix of order 4N×4N. The system is solved using MATLAB ode 15s system solver. 

4.10 TWO-DIMENSIONAL (2-D) MODELS 

Raghavan and Ruthvan (1983) described the 2-D model of displacement washing and solved the 

same with the OCM.  The study also exhibited the model involving axial dispersion coefficient, 

particle diffusion, film resistance mass transfer coefficient, bed porosity, and pore radius of 

particles to study the flow of fluid for two phases through a packed bed of porous particles. The 

present method is extended to solve the 2-D model representing the displacement washing with 

particle and bulk fluid phases. Arora and Potuček (2012) explained the mechanism of mass 

transfer, which relates to the material transfer rate between fibers and fluid. Because of the porous 

nature of fibers, solute residing inside the pores of fibers comes out when the external fluid is 

introduced. The axial dispersion, mass transfer, and fluid concentration inside and outside the 

particles contribute the main role in the process. The concentration of external fluid is considered 

as a function of time and axial distance whereas the concentration of inter-particle solute and 

concentration of solute adsorbed on the surface of the particle is considered as a function of time, 

axial distance, and pore radial distance. The unsteady state PDEs describing different phases for 

the bulk fluid and particle diffusion presented below as: 

4.10.1 Mathematical Equations for the Particle Diffusion  

The existing solute in the pores of fibers is drawn out when the external fluid is introduced in the 

porous structured bed. The solute present on the fiber surface is represented by the particle 

diffusion model. The equation for particle phase in terms of radial direction can be written as: 
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D FF




,     (4.48) 

The intra-pore concentration is denoted by q (r, x, t) and n (r, x, t) represents the solute 

concentration on the particle surface. The particles are cylindrical in nature with R as the pore 

radius and β as the particle porosity. The axial dispersion (DL) and effective diffusivity don’t 

depend on the concentrations of solute and cake thickness. The relation between bulk fluid and 

intra-pore diffusion at the particle surface is governed by the fluid film mass transfer coefficient
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fk . The intra-fiber diffusion coefficient ( FD ) is considered only in the particle diffusion phase. 

This is true because the solid-phase diffusion effects are small and can be neglected. So, the 

transport inside the fiber is better explained by the diffusion in the solution phase only.  

Boundary conditions: The boundary conditions depending on the mass transfer rate explain the 

exchange of solute between the bulk fluid and the fiber surface. Neretnieks (1976) and Raghavan 

and Ruthvan (1983) assumed the boundary condition describing the relation of bulk fluid phase 

and particle phase as:  

0
q
r





           at      0r  ,       (4.49) 
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k q c KD

r
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 
 
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
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
          at     r R .    (4.50) 

Adsorption Isotherm: It is the relation of intra-fiber and inter-fiber concentrations of solute and is 

described by Langmuir kinetics. The deposition rate and detachment rate is assumed as of second 

order in the forward direction and in the reverse direction respectively given by the following 

equation: 

1 2
( )i

F

qn
k N n k n

t C


  


,       (4.51) 

where k1 is deposition and k2 is detachment rate constants. The monovalent adsorption equation at 

equilibrium reduces to Langmuir adsorption isotherm as under:  
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F

qkN
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C qk



.         (4.52) 

4.10.2 Mathematical Equations for the Bulk Fluid 

The model equation for the fluid phase is represented by the one-dimensional axial dispersion 

model associated with the axial distance (x) and the concentration of intra-pore solute with the 

fiber surface is described by Arora and Potuček (2012) as follows: 

2
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2(1 )
F L

r R

qc c c
u D D

x t R r x


  



   
  

   
,     (4.53) 

The fluid flow of the pulp fibre bed is expressed with the bulk fluid concentration, and it is denoted 

by c (x, t). 
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Boundary conditions: The rate of change of inside pores solute concentration with respect to the 

radial position of the particle is assumed to zero, i.e., 

0
q
r





       at r = 0,        (4.54)  

and the rate of change w.r.t particle boundary radial position is supposed to be regulated by film 

resistance mass transfer coefficient, i.e., 

( | )
f

F

k wq
D q r R c

r k


   


 at r = R,     (4.55)  

Also, at the entry of the bed, loss of solute is considered negligible from the bed in the axial 

direction (x = 0) at the point of introduction of the displacing fluid: 

0L
c

uc D
x


 


 at x = 0 ,      (4.56) 

Similarly, the rate of change of concentration is taken as zero at the exit point of the bed in the 

axial direction (z = L) and given as: 

0
c

x





  at x = L,      (4.57) 

Initial condition: It is presumed that initially, the solute concentration of bulk fluid and solute 

concentration of intra-pore are identical to the solute concentration inside the vat. Also, the solute 

concentration that is adsorbed on fibers is assumed to be equal to the solute concentration that is 

adsorbed on the inside vat of the fibers 

C = q = Ci    and   n = Ni at t = 0.     (4.58) 

Arora and Potůček (2012) solved these models using OCFE and derived the effect of Pe and Bi on 

exit solute concentration, displacement ratio, and bed efficiency from the models. The excellent 

results with quadratic convergence using the technique of OCFE with Lagrangian basis were 

found. Mittal and Kukreja (2015) explored a 2-D model related to the solute removal process which 

involves axial and radial domains with the OCFE technique by using cubic Hermite as a basis 

function in place of the Lagrangian basis. The roots of shifted Legendre polynomials were used as 

collocation points in the radial direction and roots of shifted Chebyshev polynomials in the axial 

direction. However, Gupta et al. (2015) solved the same model for particle phase and fluid phase 

for the diffusion-dispersion phenomenon using CSCM. 
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4.10.3 Dimensionless Form of 2-D Model  

The model equations alongwith boundary conditions, and initial conditions are converted into 

dimensionless form as under: 

2
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are dimensionless parameters.    

4.10.4 Numerical Procedure for 2-D Model 

In the present technique, the unknown solution function is approximated using quintic Hermite 

interpolation as a trial function. These polynomials have the property of continuity of the first and 

second derivatives at nodal points that help to derive the solution at a steep gradient. The domain 

is partitioned into a finite number of elements and afterward, the collocation method is employed 
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within each element for the assumed trial function. In this case, the residuals derived for the 

approximate solution of model equations are satisfied at interior collocation points and the 

boundary conditions are satisfied at extreme node points. The radial domain is divided into N 

subdomains with 1 0   and 1 1N   . Each part of the subdomain is transformed onto [0, 1] by 

using transformation   ,l lu h   where 1,2,...,l N  and 1l l lh    . Similarly, the axial 

domain is partitioned into  subparts with 1 0   and 
1 1   . Each part of the subdomain is 

transformed onto [0, 1] by using transformation as   ,m mv h   where 1,2,...,m   and 

1m m mh    . The interior collocation points are considered as roots of 4th order shifted Legendre 

polynomials.  

Let ( , , )m

lQ u v   represent the estimated solution of ( , , )Q u v   then:  
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quintic Hermite basis functions are given as follows:
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Substituting the approximate solutions into the model equations, the following residual equations 

are obtained:  
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The residuals QR , NR  and CR  are forced to vanish at collocation points. The evaluation of ( , , )Q u v   

and ( , )C v   at boundary collocation points yields: 
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where for 1, 1,2,3,4,5m s  ; 2,3,4...., 1, 2,3,4,5m s    and , 2,3,4,5m s  .  
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using the points  ( , ) (0,0),(1,0),(0,1),(1,1)u v D  ,  
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For  ( , ) (1,1),(1,4),(4,1),(4,4)B    , we get  
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One can easily see that 3( 1)
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The initial condition  ,0 1C v   implies: 

3 1(0) 1mc   , 
3 2(0) 0mc   ,

3 3(0) 0mc        (4.85)  

for 0,1,...,m  . The initial conditions: 

1(0) 1c  , 
2(0) 0c  ,

3(0) 0c  , 
1 1

3 1(0) (0) 0nq c   .    (4.86)                                                                                             

The derived system of the differential equation along with the boundary conditions are solved 

using MATLAB ode15s system solver. 

4.11 SUMMARY  

In this chapter, different mathematical models, and basic assumptions for a systematic exploration 

of a porous structured pulp fibre bed are discussed. The different mathematical models of pulp 

washing explored by various authors are also given. Further, one dimensional linear, nonlinear, 

and 2-D models along with different boundary conditions related to pulp washing are presented. 

Discretized form and detailed numerical procedure using QHCM of the method are reported. 
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