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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, different techniques used by various authors to solve mathematical models are 

explained. This includes several studies, the effect of various parameters, and models used by 

previous researchers of the area under study.  

2.1 REVIEW OF LITERATURE  

Mathematical modeling is an effective tool for designing the practical problems experienced in the 

industry for research. The physical phenomena in sciences and engineering are expressed in the 

form of mathematical models. Such physical phenomena depend on several parameters, which 

provide linearity and nonlinearity in equations (Arora et al., 2005). These models differ from one 

another concerning validity and accuracy ranges (Dhawan and Kapoor, 2011). Sufficient efforts 

are put on by the researchers to examine the behavior of these phenomena experimentally. For a 

better understanding of the concept and to identify the gap in the literature, it would be beneficial 

to study the relevant research work. Some significant studies carried out in this area are listed 

below:    

Lapidus and Amundson (1952) studied the effect of longitudinal diffusion in chromatographic 

columns and obtained a differential equation for the wash liquor. Brenner (1962) proposed the 

pulp washing models based on the axial dispersion. In a study, Sherman (1964) described the 

mathematical model for the overall movement of solute in the bed of non-porous granular material 

by replacing molecular diffusion coefficient with longitudinal dispersion coefficient. Pellet (1964) 

introduced a mathematical model combining the effects of particle diffusion and axial dispersion. 

Pellet (1964) studied the longitudinal dispersion of solute, intra-particle diffusion of solute, and 

liquid-phase mass transfer for the particles of cylindrical and spherical geometry by using 

modified step function input. In another study, Grähs (1974) divided the packed bed of cellulose 

fibers into three different zones namely zone of flowing liquor, stagnant liquor, and certain 

physical features of the fibers (fiber porosity and fiber radius) were ignored. Later, Perron and 

Lebeau (1977) neglected the longitudinal dispersion coefficient to study sodium chloride washing 

and obtained a differential equation for the wash liquor.  
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Most of the researchers such as Brenner (1962), Potůček (1997), and Liao and Shiau (2000) used 

the axial dispersion model to describe the washing operation of the pulp fibre bed. These models 

are based on the continuity, adsorption, desorption, and diffusion-dispersion phenomena. 

According to Ganaie et al. (2014), for the efficient analysis of a packed bed of porous particles, 

the following assumptions are worth consideration: 

 The packed bed is assumed to be macroscopically uniform.  

 The particles are supposed to be of uniform cylindrical size.  

 The particle diameter is taken as very small as compared to axial distance.  

 The intrafiber diffusion coefficient is not dependent on particle radius and cake thickness. 

 The fibre consistency, porosity of the bed, and particle are considered to be interrelated 

with each other.  

 The movement of solute within the lumen of the fiber is explained by Fick’s diffusion 

phenomena.  

Further, Arora et al. (2006) explained that majority of the researchers go along with spherical solid 

particles for the development of the mathematical model used to describe the pulp washing 

processes because the reason for higher diffusion in spherical particles and a lesser amount of 

dispersion arises owing to the non-compressible character of the solid particles.  

Most of these studies focused on developing discretization in spatial and temporal directions. Such 

physical phenomena depend on many parameters which provide the nonlinearity in equations. The 

effect of the process can better be understood from the solutions for these equations, and this is 

helpful for the industries to make suitable strategies. However, according to Mittal et al. (2013), 

such derived models are complicated, and obtaining their solution is an extremely complex process 

as it involves first and second-order partial derivatives in space and time. 

2.2 STUDY OF VARIOUS MATHEMATICAL MODELS  

There is a plethora of literature available on the mathematical models solved by various authors. 

However, keeping in view the scope of the present study, the related models are summarized 

below:  
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Brenner (1962) solved a well-established model for the diffusion-type equation (dimensionless) 

describing the mixing between solute and solvent ‘phases’ and axial dispersion coefficient given 

as: 
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and the initial condition: 

( ,0) 1C X  .         (2.3) 

Also, Brenner (1962) discussed the boundary conditions suitable for the displacement process. It 

was assumed that at the inlet of the pulp bed there is no loss of solute when the displacing fluid is 

added. The second boundary condition was imposed at the exit level that the concentration of 

solute passes through a maximum or minimum so that an unacceptable conclusion is avoided. The 

study described the rapid convergence of solution using Laplace transform. Besides, the main 

parameter involved in the study is the Peclet number (Pe) which is a dimensionless parameter that 

signifies the ratio of advection to diffusion and indicates the amount of lignin dispersion in the 

pulp bed and defined as 
L

uL
Pe

D
 , which involve interstitial velocity (u), longitudinal dispersion 

coefficient (DL), and bed thickness (L). Every differential element of solvent at the introduction of 

the packed bed is instantly mixed with content of the bed and the same amount of fluid is 

transferred from the bed when 0Pe  . In this situation, the bed performs as a perfect mixing 

chamber. When Pe  , the conservation of solute mass converges too slowly, and the 

displacement process suitably moves to the asymptotic solution.  

Fan et al. (1971) solved the axial dispersion model represented by nonlinear differential equations 

(dimensionless) associated with chemical reactors is given as: 
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Fan et al. (1971) used the collocation method having the quality of easy adaptability for a computer 

program and is based on the selection of the collocation points to solve the model. The technique 

needed very short computational time and involves fewer stability difficulties. The three categories 

of collocation methods described in the study as interior, boundary, and mixed. The mixed 

collocation method was employed in which the trial function is equated to zero at collocation 

points which are chosen as the roots of a function that is orthogonal to the interior residual. The 

roots of Tschebysheff interpolation polynomials were preferred to minimize the residuals. Fan et 

al. (1971) further suggested that the selection of optimal step size of domain depends on certain 

parameters like Pe and accurate results for the solution profiles can be derived with a small step 

size for small Pe.  

Raghavan and Ruthven (1983) used the orthogonal collocation method (OCM) to find the solution 

of the axial dispersion plug-flow model describing the flow pattern of particle diffusion and 

external fluid.  

The particle diffusion model is: 
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The model for external fluid is: 
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Raghavan and Ruthven (1983) proved that the axial Pe has more influence on adsorber 

performance. When axial Pe decreases to about 40, the breakthrough time reduces. Whereas, when 

Pe is greater than 40, the parameter has a minimum effect on the performance. Since Pe is inversely 

proportional to axial dispersion (DL) therefore, axial dispersion is negligible with the increase in 

Pe. In this case, the breakthrough curve bears the effect only on bed parameters such as length and 

film resistance. However, it is independent of the distribution ratio and its effect can be significant 
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expected only in the case when the impact of axial dispersion is more influential. Thus, the 

breakthrough curve reflects only the effect of parameters like Pe, mass transfer coefficient, and 

bed length parameters under the most practically significant conditions. Further, the study revealed 

that the Biot number (Bi) that connects the mass transfer resistance within and on the surface 

should be less or near to10.  

Kim (1989) studied the behavior of the mass balance equation (dimensionless) involving unsteady-

state diffusion, reaction, and adsorption in a spherical nature porous particle as detailed below: 
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and the initial condition as in equation (2.3) 

The linear adsorption isotherm was assumed in a state of equilibrium i.e., Q kC . 

The study compared the concentration profiles of LDF (Linear driving force) formulas with the 

exact solution and found results in good agreement. 

Ma and Guiochon (1991) used orthogonal collocation on a finite element (OCFE) method for the 

process of integration of a kinetic model and compared the derived results with the finite difference 

method (FDM). Ma and Guiochon (1991) derived the numerical solution for a nonlinear model 

(dimensionless) of chromatography given as: 
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where ,i iC Q are the concentration of the ith compound in the mobile and stationary phase, iK is the 

mass transfer coefficient in the ith compound, and 1 2( , ,.....)f C C is the equation of equilibrium 

isotherm. The initial and boundary conditions are given as: 

( ,0) 1C X  .         (2.13)                  
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The study supported the special advantage of the finite element method (FEM) in terms of 

computation time, as a shorter time was taken in calculations in comparison with the FDM for 

transitory phenomena which take place in a 3-D space. The study further held that the FEM uses 

interpolation for each element whereas a step function to approximate the solution was used with 

the FDM. The study preferred the OCM because it has the advantage of calculating the solution 

profiles with high efficiency. Moreover, this method needs less computation time to update the 

elements and is beneficial for a situation where the re-collocation is taken. This technique helps to 

achieve more accurate results in calculations for diffusion problems and is beneficial for local 

estimation and grid refinement. The study also highlighted that selection of diffusion-coefficient 

plays the main role in the use of computer programs and proves the efficiency of the technique.  

Dawson (1995) presented the upwind-mixed FEM to compute the numerical solution of the 

advection-diffusion equation given as: 

  .( )c uc D c qc
t

     on [0, ]T  ,    (2.15) 

where  denotes the spatial domain in 2R , c is the concentration in flowing medium, c  is the 

concentration at sources, u is fluid velocity and D is diffusion tensor dependent on u. Dawson 

(1995) presented the solution of the equation using an implicit scheme that forms a non-symmetric 

system of an equation that is difficult to solve. He suggested that explicit schemes are beneficial 

for time-dependent problems. Moreover, these schemes can be extended to solve nonlinear 

advection problems with upwind differences. 

While describing the process of porous structure, Kill et al. (1995) explored the mathematical 

models that are expressed in terms of parabolic PDEs involving temporal and spatial derivatives. 

The study assumed the particles as of constant size and isothermal in nature. The effective 

diffusivity in the particles was taken constant and the external mass transfer resistance was 

neglected. Besides, the rate of the first order was taken in the concentration of the gaseous reactant. 

The differential equations were transformed into a set of initial value problems using the OCM. 

The method was found to be an effective solution technique for the problems encountered in heat 

and mass transfer processes. 
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Kukreja (1996) discussed the pulp washing process in detail and derived the complete mechanism 

for mathematical models of different zones of pulp washing. All stages like washing and 

dewatering zone and the related equations are also explained in detail. The efficiency parameters 

related to pulp washing like displacement ratio, wash ratio, efficiency and dilution factor are also 

discussed.  
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With different boundary and initial conditions. 

The model equations are solved using Laplace transform method and results are validated from 

the data of a rotary vacuum washer. The study has also given the information about important 

parameters like bed porosity, cake thickness, time of washing, interstitial velocity, mass transfer 

rate and amount of wash water added on pulp washing. 

 Zheng and Gu (1996) solved the model equation describing the fixed bed tabular reactor of one-

dimensional mass balance equation involving axial dispersion given as: 
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where R is the consumption rate of the reactant. The study used the Laplace transform method to 

approximate the analytical solution. The experimental data on glucose was used to examine the 

effluent concentrations for different flow rates in the study. Further, the study proved that the exact 

value of concentration was in good agreement with the results for a lower value of Pe and Bi. Also, 

the effluent concentration can reach the steady-state value faster after the startup period, but the 

conversion ratio was found to be lower with the increase in Pe and decease in Bi. Further, more 

accurate results can be derived by increasing the number of partitions for higher values of Pe and 

Bi.  

In a study, Potůček (1997) gave a detailed description of the one-dimensional plug flow models 

(dimensionless) considering axial dispersion as: 
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The study used the boundary conditions considered by Brenner (1962) which were suitable for the 

displacement process and applied the cubic spline method to solve the model. The solution of the 

axial dispersion model describing the miscible fluid displacement in beds with finite thickness was 
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expressed in terms of exit solute concentration. The study predicted the washing efficiency as a 

function of Pe.  It has an inverse relation to the diffusion coefficient and plays an important role in 

evaluating the washer performance. The study further explained that the shape of the breakthrough 

curves indicates the flow rate of displacement washing through the pulp bed and must lie between 

the ideal limits of perfectly mixed flow and plug flow. Based on experimental results, the study 

proved that the increase in initial bed lignin concentration decreases the wash yield. Potůček (1997) 

further noticed that the type of pulp or fibre characteristics were the main variable that affect the 

dispersion coefficient. Despite this, the average pore size, the difference in geometry, and the pore 

size distribution that occurs in fibre material were influencing dispersion in the pulp bed. 

Liao and Shiau (2000) established that the analytical solution is fitted to the experimental data by 

considering the practical example of an activated carbon fixed bed adsorber used to remove phenol 

from wastewater. The study used the axial dispersion model (dimensionless) to estimate the kinetic 

behavior and proficiency of a fixed bed adsorber given as:  
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and the initial condition: 

( ,0) 1C X  ,         (2.21) 

where dR  is the retardation coefficient defined as the removal rate of adsorbed solute on the 

particle surface. The study used the analytic and numerical technique to solve the above model 

with linear adsorption isotherm and experimentally examined the validity of this model. Liao and 

Shiau (2000) proved that a rapid converging solution can be derived using the Laplace transform 

and used a series expansion technique to solve the model for a small value of Pe. The case of 

perfect mixing and perfect displacement were discussed, and it was suggested that an asymptotic 

solution is used to examine the conditions when dR  is small and Pe is large. The mixing effect 

was more when the value of Pe was low by keeping the value of dR  as constant. In the case when 

Pe was constant and the value dR  was large, the level of breakthrough curves rises more slowly, 
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and a larger breakthrough time was needed in this condition. The large value of Pe and constant 

dR  made the effluent concentration of adsorbate reached the influent concentration rapidly, 

however, it needed a larger breakthrough time. In the case of small Pe and constant value of dR , 

the breakthrough curve gave a similar effect. 

Szukiewicz (2000) highlighted that the fixed-bed reactors are normally used for heterogeneous 

catalytic processes in the industry. The study suggested two groups of models: pseudo 

homogeneous and heterogeneous models. The first type of model considered the same temperature 

and constituent concentrations in the catalyst particles and fluid bulk. Owing to this assumption, 

these models were expressed as PDEs for the fluid phase only and are comparatively easy but 

generally are of low accuracy. The other method for the mathematical model was considered for 

the adsorption and diffusion process. The later type of model considered fluid and the catalyst 

pellets described by PDEs were mainly used for reactors and gave accurate results in comparison 

to the first type. Szukiewicz (2000) presented an approximate model for the diffusion and reaction 

process with high accuracy which was useful for the process of diffusion-reaction in porous 

catalysts and process that considers internal diffusion and adsorption given as: 

2
2

2

2
( )A

c c c
R c

t x x x


  
  

  
.       (2.22) 

It was found that more accuracy can be achieved in short time when the Thiele modulus ( ), which 

is the ratio of reaction and diffusion rate, is higher. 

While extending his earlier work, Szukiewicz (2001) derived the effect of the Thiele modulus and 

Bi and highlighted that the external mass-transfer resistance decreases when the value of the Thiele 

modulus increased that affects the chemical reaction. The study observed that the accuracy of 

calculations is higher influenced by Bi and found that accuracy of the approximate model was 

better when the Bi was small, and the Thiele modulus was large. The accuracy of the approximation 

model was very high for the entire range of Thiele modulus regardless of external mass-transfer 

resistance and the geometry of the pellet. 

Shiraishi (2001) solved the axial dispersion model (dimensionless) which is extensively used for 

tubular flow reactors and combines the effect of the chemical reaction and reactant flow given as: 
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The study used the numerical method in which the fundamental differential equation was 

transformed into S-system (synergistic and saturable system) canonical form and was solved with 

the shooting method combined with the Taylor’s series method. Also, this scheme was used to 

investigate the accuracy of numerical solutions for the range of parameters such as Pe, 

dimensionless kinetic constant (k), and reaction order (n). The was also proposed that the method 

is also beneficial for numerical calculations in the engineering field and gives accurate results up 

to three significant digits.  

Carrara et al. (2003) considered the mathematical model associated with substrate concentration 

profile involving mass transfer resistance, axial dispersion flow, and an isothermal tubular reactor 

given by:  
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where tC is dimensionless mass transfer coefficient, C is dimensionless substrate concentration in 

bulk motion, z is dimensionless axial co-ordinate, and  is dimensionless substrate concentration. 

The study discussed the solution of a mathematical model describing the dispersion flow in the 

reactor represented by a second order PDE using OCM based on an approximation of the solution 

using a series. The solution of this equation accurately determined the effect of important factors 

involved in this process such as back mixing, and diffusional resistance to improve the theoretical 

values obtained.  

Farooq and Karimi (2003) considered the two-dimensional (2D) model involving diffusion in both 

axial as well as radial directions. 

The mass balance equation for the solute in a radial direction is: 
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where mD is molecular diffusivity, c is the concentration of solute in fluid, v  is fluid velocity, r 

is the radius and x is the axial distance. The boundary conditions and initial conditions are the 

same as considered by Brenner (1962). 

The dispersed plug flow model involves axial dispersion as: 
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where LD is axial dispersion coefficient, v is the average fluid velocity, k is mass transfer 

coefficient, c and is the mixing cup concentration of solute at the axial plane. The radial diffusion 

and radial concentration gradient are not considered in the plug flow model, but only axial 

dispersion is involved.   

An iterative technique was used in the study to solve the model equations by reducing them into a 

one-dimensional dispersed plug flow model and it proved that the solution of the plug flow model 

is improved consistently. It also determined that the error of this model is increased when there is 

a decrease in the wall resistance.  

Renou et al. (2003) explained that the mathematical formulation of isothermal tubular reactors 

using mass balances form a system of PDEs used to describe the convection-dispersion-reaction 

equations. The derived dispersion model in the form of a well-known second-order parabolic 

equations that deals with non-ideal reactors as: 
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where c (z, t) is the concentration in the reactor, D represents the dispersion coefficient, v represents 

the superficial velocity and r represents the reaction kinetics. 

The study proposed the sequencing method to prove the superiority and accuracy of the method 

over traditional methods. It highlighted some advantages of this method such as simplicity and 

real-time applicability and discussed that in many problems like instability and oscillation, solution 

arise due to small dispersion coefficient with inappropriate use of the Danckwerts’ boundary 

conditions. Besides, it emphasized that the major factors such as convection and dispersion 

influence the accuracy of the solution. It also highlighted the applicability of the method for the 

numerical simulation of the model as a useful tool for an industrial application. 

Dehghan (2004) presented the comparison of different numerical techniques for solving the one-

dimensional PDE used to describe the quantities such as heat, mass, energy, and vorticity involved 

in the advection-diffusion equation given as: 
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where and  are positive constants measuring the diffusion and advection practices respectively. 

The implicit BTCS-type finite-difference technique in which the centered-difference scheme was 

applied for the advection and diffusion term involving spatial derivative and backward-difference 
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scheme was applied for the terms involving time derivative. Dehghan (2004) also described the 

disadvantage of this scheme owing to the consumption of more CPU time for the procedure and 

explained that the upwind implicit formula used to approximate PDE is accurate for the first order 

and justified the use of the Crank-Nicolson scheme for spatial derivatives by proving the second 

order accuracy. The study highlighted that the time required using explicit FDM is about 3 times 

smaller in comparison to implicit finite difference schemes. 

Coimbra et al. (2004) used the technique of moving finite element method (MFEM) for 

discretizing the continuous bending spatial grids of the time dependent PDE involved in 

phenomena related to moving fronts, shocks, and pulses.  

The study deals with two one-dimensional problems from mathematical biology describing the 

flow across a nerve membrane and problems related to the chemical engineering process 

connecting with convection, diffusion, and reaction. It considered the diffusion–convection–

reaction model as: 
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where C is normalized concentration, X is normalized space variable, t is time variable normalized 

by diffusion time constant,   is intra-particle Peclet number and   is Thiele modulus. Coimbra 

et al. (2004) also derived the results for different values of Pe and   and mentioned the time 

consumed in this work. The numerical results revealed the capacity of the method to derive the 

solution with accuracy for time-dependent problems even in the case of a few nodes for the space 

grid. Further, the method was expanded to simulate the 2D model of a fixed bed reactor associated 

with heat transfer in both radial and axial dispersions.   

Arora et al. (2005) considered the diffusion-reaction problem with different boundary conditions 

and explained in detail the OCFE method and its convergence criteria with relative error in their 

work. While solving the linear model proposed by Brenner (1962), it was discussed that the axial 

dispersion coefficient became higher than the convection for a small value of Pe because the 

differential element solute added into the bed immediately mixes up with the bed. The study 

reported that the solution profile follows a Gaussian curve. When the value of Pe increases, 

elements needed in the spatial domain are greater than 20, however, only 5–7 elements were 

required when Pe is small. It also highlighted that the large value of Pe makes the outcome of 
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convective transport small.  Due to this, a stiffer system of equations was noticed and found that 

the target of sufficient accuracy of the numerical solutions can be achieved by adding more 

elements. It was also explained that the relative error was reduced by adding more elements in the 

domain and supported that although the number of equations was increased with more collocation 

points and consumption of excess time to achieve the target, however, the same got balanced when 

the magnitude of relative error was reduced.  

Karahan (2006) proposed a numerical scheme to solve the one-dimensional advection-diffusion 

equation (ADE) describing the transport and diffusion process as: 
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The study proposed FDM using implicit spreadsheet simulation (ADEISS) for change in spatial 

and temporal weighted parameters. It obtained the solution using the backward time-centered 

space (BTCS), upwind scheme, and Crank–Nicolson schemes. Karahan (2006) reported that finite 

difference is a well-established numerical technique applied to approximate the flow and transport 

modeling. It was also discussed that the problems associated with environmental pollution for 

groundwater, rivers, coasts, and the atmosphere can be handled with the mathematical model of 

diffusion–dispersion that describes the diffusion and transport process.  

In a study, Arora et al. (2006) solved another pulp washing model involving the parameters such 

as Bi and Pe given as: 
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and the initial condition: 

( ,0) 1C X  .         (2.33) 

The study divided the domain into 25 elements and took three interior collocation points to 

discretize the model equation. It was noticed that the relative error was nearer to zero for 20Pe   

and 5Bi   and achieved stability of numerical results for 60Pe  . The model associated with the 

diffusion-reaction problem given by Liao and Shiau (2000) involving Rd with the OCFE was 
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solved and it was observed that absolute percentage error was less tinct values of Pe and 1.25dR 

. For 40Pe  and different values of Rd, the error was less than 1% using OCFE as compared to 

OCM. 

Arora et al. (2006) solved the second model and considered the heat equation (dimensionless) as: 
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with boundary conditions as: 
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The collocation points were chosen as the zeros of both Legendre and Chebyshev polynomials and 

found the least relative error with Legendre polynomials. Therefore, it was strongly recommended 

that the Legendre zeros should be employed as the collocation points instead of Chebyshev zeros.  

Thereafter, the model of a diffusion-reaction problem (dimensionless) was considered as: 
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where  0 0,Ac K Bc     

The boundary conditions and initial condition was same as used by Brenner (1962). 

It used Langmuir adsorption isotherm for the problem and observed the results of solution profiles 

for different values , ,K Pe
 expressed as breakthrough curves which smoothly converge to 

zero even, when Pe takes large values.  

The model of the non-linear diffusion-reaction problem(dimensionless) was given as: 
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with boundary and initial conditions same as those used by Brenner (1962), the problem involved 

the mass transfer coefficient and described the performance of miscible fluids during washing and 
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sorption operations. Further, it was reported that the solution profile smoothly approached to 

steady state situation when the time was increased. The data for simulation purposes was taken 

from Grähs (1974). The results of OCM and OCFE for 71Pe   and 
* 0.01983P   were compared 

and smooth convergence of solution profile to zero was observed.  

Tervola (2006) discussed practical applications of the advection-dispersion model used for one-

stage cake washing in the fields of pulp fibre, clays, lime mud, and many more as: 
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with boundary and initial conditions as used by Brenner (1962). 

The research used a modified asymptotic formula and Fourier series method based on the Laplace 

transform to solve this model problem. It explored the solution of the multistage countercurrent 

pulp washing model to investigate the results of wash effluent movement. It was described that the 

segregated wash effluent circulation was an attractive option to recover the solute in the process 

of cake washing and was frequently applied in the pulping chemical industry. The results revealed 

that a bigger portion of solute was removed, when the Pe was high and very small Pe was not a 

case suitable for efficient cake washing. Further, the fraction of solute residing in the cake was 

reduced with an increase in the Pe. Likewise, when wash ratio was nearer to one, the highest 

portion of effluent solute was detached from the cake. The area for wash liquor became narrow 

when the Pe was high, which made the recovery of the solute better. Because in this case, the 

entering wash liquid entirely mixed up with the entire content and detached from the element with 

the same amount of the wash liquor.  

Singh et al. (2008) considered the differential equation describing the model of filter cake washing 

based on longitudinal mixing phenomena by overlooking the accumulation capacity of fibers as 

given by Brenner (1962).  

The problem used to describe the longitudinal dispersion in porous media given as: 
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The adsorption isotherm taken at a finite rate as given below: 
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The model was solved using “pdepe” solver with MATLAB and proved the efficiency of the 

method by comparing the results with the earlier work of Brenner (1962), Grähs (1974), and 

Kumar et al. (2010). The study achieved good accuracy of numerical results for the pulp washing 

model considering the particle diffusion and axial dispersion with negligible error.  

Arora and Potuček (2012) explained the mechanism of mass transfer rate between fibers and fluid 

with the 2D model equations. The study revealed that the existing solute in the pores of fibers was 

drawn-out when the external fluid was introduced into the porous structured bed. Fick’s law was 

used to describe the transfer of solute inside the fiber pores. Film resistance mass transfer 

coefficient (kf) controls the mass transfer from the stationary layer between the external fluid and 

fiber. This state was described by the model equation in the particle phase given as: 
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The Langmuir adsorption isotherm is used to explain the first type of mechanism rate associated 

with displacement washing of pulp fibre bed for fluid flow as:  
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The mathematical model for bulk fluid is a phase in which the impurities adsorbed within fiber 

pores and on fiber surface are washed away by the introduction of external fluid. The impurities 

get detached from the surface of the fiber and mix with external fluid by dispersion which was 

expressed by DL (axial dispersion coefficient) and was independent of L (axial distance) described 

as: 
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with boundary condition 
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The model equations were solved with OCFE and the applicability of the method was checked by 

comparing the predicted values with the experimental values. The parameters like Bi and Pe 

depend upon axial dispersion coefficient and interstitial wash liquid velocity. However, the 

interstitial velocity varies with the change in bed porosity and was described by Darcy's law. It 

was regulated with the help of bed consistency along with a specific volume of fibers. The study 
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verified the theoretical behavior for concentration profiles at the exit solute level for different 

values of Pe and Bi =10. It was noticed that the solution profile takes more time to reach the steady 

state condition for Pe = 10 in comparison to Pe = 30. Yet, for Pe > 30 less significant influence on 

solution profiles was observed. Further, the study considered the cake thickness comparatively 

small, therefore, the solute takes more time to leach from fiber surface and this contributes to small 

Pe. A significant effect on solution profile was observed for Pe < 30 and Bi <10.  

Kumar et al. (2009) considered the transport equations involving mass transfer and diffusion based 

on material balance equations. These transport equations along with the various boundary 

conditions and the adsorption isotherms were used to express the equilibrium between the solute 

concentration in the liquor and on the fibers. These equations collectively described the 

mathematical models of pulp washing involving particle diffusion and axial dispersion such as:  
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where LD is the dispersion coefficient, u is the speed of liquor in cake pores,  is the bed porosity, 

t is time, x is the cake thickness, c is solute concentrations in liquor and n is solute concentrations 

in fibre. 

These transport equations along with the two boundary conditions are the same as those used by 

Brenner (1962) and Grähs (1974). The adsorption isotherms used to express the equilibrium 

between the solute concentration on the fibers and in the liquor are given as: 
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where k1 and k2 are mass transfer coefficients. 

The system of equations was solved using the “pdepe” solver with MATLAB code and proved 

that the technique was more appropriate and took less time than the previous techniques. These 

pulp washing models were used to explain the washing performance in respect of different input 

parameters like mass transfer coefficient, longitudinal dispersion coefficient, interstitial velocity, 

and total porosity of the cake. These input parameters were joined to derive the dimensionless 

parameters such as Pe and DL. The variation in the longitudinal dispersion coefficient and 

interstitial velocity was observed when the length of the bed was assumed constant.  
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Sari et al. (2010) proposed the FDM up to the tenth order in space with a combination of the Runge-

Kutta method in time to solve the one-dimensional advection-diffusion equation and solved two 

examples with different values of velocity (u) and diffusion coefficient (D) given as: 
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The study described the high-order differences using Taylor’s series expansion. The numerical 

computations corroborate accurate results as compared to the work of previous researchers.  

Kumar et al. (2010) presented the work on the mathematical model that emphasizes the four stages 

of the counter-current washing system. The work was based on some assumptions such that pulp 

fibers packed bed considered to have symmetrical cylindrical fibers of homogeneous structure. 

The instant behavior of such type of system is described by an equation that involves the variables 

and their partial derivatives. Two models with different boundary conditions are explored using a 

“pdepe” solver with MATLAB and experimental data of Grähs (1974) by Kumar et al. (2009) with 

nonlinear adsorption isotherm as 
1

ABc
n

Bc



 for Pe=71.26. It was concluded that boundary 

conditions have not much significant effect on the washing results. 

Dhawan and Kapoor (2011) explored that the advection-dominated transport problems are 

generally fragmented into a diffusion equation and advection equation given as: 

2

2

c c c
k

t x x


  
 

  
,        (2.49) 

where t is the temporal variable, x is the spatial variable, and , 0k    measures diffusion and 

advection process respectively.  

The equation depends on the advection coefficient and diffusion coefficient. This turns into 

parabolic when diffusion dominates or hyperbolic in the process when advection dominates. The 

results of the transport equation were validated by comparing the present algorithm with analytical 

solutions in unsteady non-uniform flow. The ADE was numerically solved using the B-spline finite 

element technique and explained that the method is capable enough to produce highly accurate 

results as compared to the other polynomial approximations. 

Roininen and Alopaeus (2011) explored the fixed bed adsorber which is expressed in the form of 

a dimensionless model equation given by Liao and Shiau (2000) using the moment method to solve 

the flow systems involving reaction and axial dispersion with Danckwerts boundary conditions. 
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The cubic polynomials are used in this technique and the results are obtained with MATLAB 

ode15s solver. The velocity is considered as constant, but Pe and Da (Damköhler number) 

contribute a major role in the numerical approximation of concentration profiles. The study 

revealed that better approximations can be derived by dividing the domain into more elements and 

the error decreases more speedily when higher order polynomials or when variables are increased. 

An increase in Pe shows fluctuations that lead to the situation of negative concentrations. Besides, 

the Rd affects the shape of the breakthrough curve only for the comparatively low Pe. It was found 

that less computational time is used by the OCFE method in comparison with the moment or 

Galerkin method because the least number of operations are needed for a time step.  

Ahmed (2012) explored the ADE widely applicable in industrial practice given as: 
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The high value of Pe causes oscillations or more damping in numerical results. It was also noticed 

that error in numerical results is large with an increase in space size and can be minimized by 

reducing space size and step size of time. 

Dhawan et al. (2012) explained the transport phenomena, which is a natural process, that takes 

place in the fluids along with the combination of advection and diffusion is given by:  
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The technique of B-spline functions along with FEM was used to solve this model and a major 

reduction in the computational cost was observed, while solving the problem. The performance of 

the scheme is tested for different numerical examples by comparing the accuracy and derived 

satisfactory results. 

Gupta and Kukreja (2012) explored the cubic spline collocation method (CSCM) to solve two 

linear model equations used by Arora et al. (2006) and one nonlinear problem describing the 

diffusion–dispersion and adsorption-desorption phenomenon in porous media. The relative error 

was noticed to be decreasing with this method as compared to OCM and fluctuations was observed 

with OCM at the initial stage. Gupta and Kukreja (2012) proved that the accuracy of the results 

can be achieved with an increase in the number of elements for Pe in the range of 10 to 40 and 

results were stable after the division of the domain into 150 elements, when the value of Pe is 200. 

At least second-order uniform convergence was achieved and relative errors and L2 norm decreased 
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with an increase in mesh points. For the axial dispersion model, the numerical results were 

compared with OCM and OCFE in terms of elapsed time. It was noticed that solute takes a lesser 

mean residence time, when comes out from the bed, for Bi = 7.5 and Pe = 60 in comparison with 

Bi = 1.5 and Pe = 10 due to small axial dispersion. As well as the ratio L/DL was increased, the Pe 

and Bi becomes large. This yields the piston-like effect on wash water to remove the solute from 

bulk fluid due to the cause of less diffusion–dispersion.  

This study also considered a nonlinear, non-homogeneous, parabolic equation that describes the 

behavior of miscible fluids during sorption and washing operations given as: 
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where the solute concentration of the fibre and liquor are linked via Langmuir adsorption isotherm: 
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The model was solved with CSCM, and the data of Grähs (1974) was used for simulation. It was 

also proved that washing efficiency increased due to less back mixing, for small DL. The diffusion 

of solute from particle pores is reduced when the interstitial velocity was increased due to an 

increase in axial dispersion and cake thickness. This improved the washing efficiency subject to 

certain consistency limits. 

Ganaie et al. (2013) considered the mass balance equation describing the packed bed containing 

the symmetrical porous particles (homogeneous in nature) from which wash water moves 

represented by an axial dispersion model as: 
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with the same boundary and initial condition as taken by Singh et al. (2008) and adsorption 

isotherm as: 

q kc .          (2.55) 

The mixed collocation method with collocation points of shifted Chebyshev polynomials was used 

to solve the model. The results for Pe=0, 32, and 80 in terms of relative error were compared and 

perfect agreement between the analytic and numerical results was noticed. The error was decreased 

with an increase in collocation points but after 15 interior collocation points the concentration 
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profiles started overlapping and not much significant change was observed. The concentration 

profile has a faster rate of convergence and was more peaked for Pe= 200.  

Mittal et al. (2013) considered diffusion–dispersion, adsorption-desorption phenomena of the 

porous structured pulp bed for the linear model explored by Arora et al. (2005) and nonlinear 

model equation used by Gupta and Kukreja (2012) and solved these models with CHCM. The 

collocation points as the roots of shifted Chebyshev polynomials were taken. The numerical results 

derived using CHCM were very close to the analytic solution than previous results of OCM and 

OCFE. The rate of convergence of CHCM was found quadratic with the choice of Chebyshev 

roots. The concentration of solute at exit level was found to be dependent on Pe which is the ratio 

of axial dispersion coefficient (DL) and convection (uL). The industrial parameters such as bed 

efficiency and displacement ratio were also estimated. 

Chaplya et al. (2013) solved the mathematical model for the prediction of pollution spread in the 

porous structure of soil related to the process. The diffusion problem for a two-phase layer with a 

diffusion coefficient involving the mechanism of advective mass transfer was considered. The first 

equation related to mass transport by diffusion and advection and the second assumes velocity as 

constant given as: 
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Where 1D and 2D are diffusion coefficient, 1C and 2C are concentrations, v is advective velocity and 

x and y are directions. The study proposed the technique of integral transform for each domain to 

derive the analytic solution for a diffusion problem. The process of mass transfer was depended 

on various parameters like structure, porous media, and dispersion.  

Robalo et al. (2013) studied the model based on the displacement washing operation describing 

the displacement of homogeneous solute by introducing a solvent as follows: 
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The Dirichlet and Neumann boundary conditions were used at the inlet and exit of the bed. The 

model also comprised the equation describing mass transfer in particles of the porous structure. 

The numerical solution of one-dimensional parabolic equation using the MFEM method was used 

to approximate polynomial in each finite element. The numerical outputs obtained were validated 
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and compared with the existing analytic solution obtained by previous researchers. The study 

highlighted that MFEM gives an accurate solution for the model with a small number of spatial 

node points. Also, the CPU time used to complete the whole process was very less compared to 

previous techniques. It was observed that extra effort is needed to complete the process with an 

increase in Pe. 

Jia et al. (2013) described the enhanced oil recovery practices which are solvent-based increasing 

the attention to the production of the crude oil reserves. The convection, dispersion, and molecular 

diffusion are considered the main mass transfer structures for crude oil and solvent vapor mixing. 

The models of advection-diffusion that describes the process of mass-transfer with different states 

of diffusion and flow velocity considered as: 
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where, the concentration of solvent in the crude oil is represented by c, v represents the flow 

velocity, D represents the diffusion coefficient, and x represents the space variable.  

The Dirichlet and Neumann boundary conditions were applied at the transition zone boundary and 

assumed that at the initial stage that the model is free of solvent. The semi-analytical solutions 

were derived for these models with the extraordinary approximation scheme and Laplace 

transformation. The numerical results were validated with the existing analytical solution and the 

value of Pe was helpful to estimate the results with more accuracy. Besides, the proximity of the 

solution profile was improved with the change due to the linear relation between D, v and Pe. The 

role of flow velocity was noticed much more than the diffusion coefficient in the mass-transfer 

procedure of crude oil–solvent.  

Duque et al. (2014) used FEM with moving mesh to solve the equation involving adsorption for 

porous medium. The domain was partitioned into a finite number of elements and the interpolating 

polynomials such as Lagrange were used to estimate the solution for each finite element. Then 

derived system of ODEs was solved using the Gaussian quadrature. The better estimation was 

achieved by increasing the degree of interpolating polynomials and using an adequate grid with a 

small number of finite elements. 

Kar et al. (2014) considered a radiative and dissipative visco-elastic flow problem for the porous 

stretched sheet. This phenomenon was mainly applicable to the polymer industry in sheets 
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stretching with a dissipative environment and is described by the two-dimensional convective 

steady laminar flow equation for species concentration as: 
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where D is the diffusion coefficient and K is the chemical reactor parameter. 

The Kummer’s function (hypergeometric function) was applied to estimate the heat and mass 

transfer equations. It was observed that when diffusive fluid was low, the reduction in the rate of 

heat transfer was due to the presence of porous structure, heat source, and radiation. On the other 

hand, the rate of mass transfer was reduced when the diffusing species are heavier, the chemical 

reaction rate is higher, suction is stronger, and a porous matrix structure is present.  

Okhovat et al. (2014) considered the 2-dimensional, incompressible, isothermal, steady state 

convection-diffusion models to examine the mass transfer performance of the structure and solved 

the equations simultaneously. The combination of computational fluid dynamics (CFD) and a 

mathematical model was developed to explore the erosion-corrosion phenomenon applicable in 

two-phase fluid transport pipelines. The behaviors of the detaching and re-fixing impacts of flow 

lines were examined and results were compared with experiments in practical geometry and good 

agreements with the experimental results was noticed in this work. 

Gupta et al. (2015) solved a 2-dimensional model for the particle phase and fluid phase. The 

particle diffusion model was virtuous to represent the solute accumulation on the fiber surface 

described as: 
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with adsorption isotherm as: 
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The boundary conditions used to describe the solute exchange between the fiber surface and the 

bulk fluid are related to mass transfer rates given as:  
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where c (z, t) is solute concentration in fluid, q (z, t, r) is solute concentration inside the pores, n 

(z, t, r) is adsorbed solute concentration on the fibre, FC is fibre consistency, FD is intrafibre 

diffusion coefficient, K is the volumetric equilibrium constant (dimensionless), fk is film 

resistance mass transfer coefficient,   is particle porosity, r is particle solute radial position, R is 

fibre radius, 1 2/k k k  and 1 2,k k  are mass transfer coefficients and t is time. 

The one-dimensional axial dispersion model connected with solute concentration of intrapore at 

the fiber surface with axial distance (z) was used to represent the fluid phase is given as: 
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with boundary condition 
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where u was the interstitial velocity, L was the packed bed thickness, LD was the longitudinal 

dispersion coefficient,   was the cake porosity and x represent the thickness of the packed bed 

(variable). 

The CSCM was used to solve the model equation and validated the derived results with the 

laboratory data of Arora and Potůček (2012). The convergence of order two was attained with 

CSCM. The results were derived the numerical results for various values of Pe and Bi.  The study 

expressed the range of Pe for the experimental data used was lying from 18–26 and supported that 

not much effect of interstitial velocity was noticed on the concentration of solute. There was a 

decrease in viscosity and porosity when the interstitial velocity and axial dispersion coefficient 

was increased simultaneously, and the washing operation was not much affected by u. Further, the 

greater value of porosity made the exit solute concentration curve nearer to zero and thus the 

washing operation efficiency was increased. The distribution ratio was increased when the value 

of 

2

F

R u

LD
   is decreased. The retention time was increased in this situation and subsequently, 

more time was taken by concentration profiles to attain the steady state condition. The minimum 

relative error validates the accuracy of CSCM and produces smooth and stable solutions. 

Mittal and Kukreja (2015) used the OCFE technique with cubic Hermite as a basis function in 

place of the Lagrangian basis. This study explored the 2D model used by Gupta et al. (2015) related 
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to the solute removal process which involves axial and radial domains. The roots of shifted 

Legendre polynomials were used as collocation points in the radial direction and roots of shifted 

Chebyshev polynomials were used in the axial direction. The study found better results than the 

previous investigators in solving the pulp washing models. 

Potůček and Hájková (2016) used the stimulus-response method to solve the pulp washing model 

applied by Potucek (1997) and explored the dispersed plug flow model which describes the 

displacement process of the black liquor from the pulp fibre bed. The washing experiment 

performed lies within the logical limits of plug flow with infinite diffusion for a fully stirred vessel. 

It was noticed that the washing curve with a long tail was obtained when there was short time 

contact between the fibers and wash liquid. The low average interstitial velocity was taken and the 

long-time contact of wash liquid with the fibers was noticed. The range of the Pe between 6 and 

41 was considered and it was noticed that the dependency of Pe was little on the wash yield.  

Jiwari et al. (2018) considered the one-dimensional advection-diffusion-reaction model to study 

tumor invasion and tumor angiogenesis. The model deals with the progression carried by tumor 

that aims to describe the linkage of the nutrient supply and blood network to examine further 

growth. An extensive range of solution profiles affected by a wide range of diffusion coefficients 

describing the natural phenomenon of tumor angiogenesis was explained in the study. It applied 

the numerical algorithm established for the differential quadrature method (DQM) in which the 

derivatives are replaced by a weighted sum which is then transformed into a system of differential 

equations, i.e., ODEs. The system attained is solved with the 4th order Runge-Kutta method. The 

results of four numerical examples were tested to prove the efficiency and accuracy of using the 

present algorithm. The technique of DQM-based approach gave high accuracy with minimum 

computational cost.  

Kaur et al. (2018) solved the linear and nonlinear model equations of pulp washing explored by 

Mittal et al. (2013) using the quintic Hermite collocation method (QHCM). The study proved the 

accuracy of this method over CHCM. 

Mishra et al. (2019) presented a numerical technique of orthogonal spline collocation (OSC) for 

the solution of the semi linear reaction-diffusion equation described by BVPs for discretization in 

the spatial domain of time-dependent problems. The optimal accuracy of the method was proved 

and its advantages over FEM and FDM due to the continuous approximation of the solution (and 

its first derivative) over the entire spatial domain of the problem were also discussed. The 
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advantage of not involving the calculation of integrals was explained and this is fit to use for high-

order approximations of all types of boundary conditions. Additionally, this method yielded super 

convergent approximations of the solution and its first derivatives. 

Bu and Bak (2020) used a backward semi-Lagrangian scheme (BSL) to solve the nonlinear 

advection-diffusion–dispersion equation. The BSL revealed better stability and believes to use 

more steps in temporal grid size than in the spatial. The scheme of a high order to measure stability 

and accuracy with the help of six numerical experiments was attained. The study estimated the 

computational errors using the L2 norm and the maximum norm and proved the method as more 

accurate, and efficient with less computational costs in comparison with other methods.  

Jannesari and Tatari (2020) presented a study on the adaptive element free Galerkin (EFG) 

algorithm based on the moving least squares (MLS) to find the results for convection-diffusion 

equations. The study also revealed that the situation of oscillatory numerical solutions can be 

avoided by the selection of Pe which should be chosen according to the need to attain stability. 

The relative error, L2 error, and CPU time by dividing the domain into different elements were 

compared to prove the efficiency of the presented method.  

Kaur et al. (2021) discussed in detail the QHCM technique. Furthermore, the model equations 

were solved used by Arora et al. (20006a) and proved the superiority of QHCM over OCFE and 

CHCM was noticed. The stability of the method using both Euclidean and maximum norms 

authors was also tested. The study also confirmed that less CPU time was consumed with QHCM 

as compared to previously existing ones. Moreover, the effect of important parameters like Pe, DL, 

u, and L on the washing process were also discussed. 

Hajaji et al. (2021) considered the quintic spline approximation to estimate the space derivative 

and the time derivative part was approximated using difference approximation. The combination 

of quintic spline techniques and the finite difference method gave improved results than the finite 

difference methods. The technique was numerically stable and simple for providing approximation 

order with high accuracy.  

Singh et al. (2021) used the OCFE method to solve the PDEs by employing quintic Hermite 

polynomials. The BVPs of order three and PDEs (linear and nonlinear) were also solved, and the 

technique was suggested to find special solutions for the phenomena like travelling waves. The 

stability of high order with Gauss points as collocation points was achieved in this method using 

quintic polynomials and proved the method to be super convergent.  
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Mehrpouya and Salehi (2021) proposed a robust numerical method to derive an accurate solution 

to the complex five BVPs by using an orthogonal collocation scheme to discretize the problem and 

converted this to algebraic equations. The system of equations was solved using the collocation 

method and the method proved to acquires better numerical results even when small discretization 

points were used.  

 

2.3 SUMMARY  

The chapter highlights the contribution of various researchers in the field of mathematical 

modeling and application of convection-diffusion, advection-diffusion, adsorption-desorption in 

different areas including, oil extraction, tumor invasions, prediction of pollution spread in soil, 

fluid dynamics, paper industry, polymer industry, etc. Different numerical/analytic techniques 

used by previous researchers to solve linear and non-linear models along with their findings like, 

Laplace transform, Fourier transform, Galerkin method, FDM, OCM, OCFE and many more. 

Besides, the results related to these studies are also summarized in this chapter. 


