TABLE OF CONTENTS

Description	Pa	ge No.
Candidate's	leclaration	ii
Abstract		iii
Acknowledg	ement	X
Table of contents		xi
List of figure	s	xvii
List of tables		xxii
List of public	eations	xxiv
CHAPTER	1 INTRODUCTION	
1.1	Mathematical modeling	1
1.2	Boundary value problems	4
1.3	Pulp washing	5
	1.3.1 Types of pulp washing	6
	1.3.2 Approaches to pulp washing models	7
	1.3.3Diffusion-dispersion and adsorption-desorption phenomeno	n 8
1.4	Summary	9
CHAPTER	2 LITERATURE REVIEW	
2.1	Review of literature	10
2.2	Study of various mathematical models	11
2.3	Summary	36

CHAPTER 3 METHODOLOGY

3.1	The analytic solution	37
3.2	The numerical solution	38
	3.2.1 Orthogonal collocation method	39
	3.2.2 Orthogonal collocation finite element method	40
	3.2.3 Spline collocation method	41
	3.2.4 Cubic Hermite collocation method	42
	3.2.5 Collocation points	45
	3.2.6 Error calculations	46
	3.2.7 Convergence criteria	47
	3.2.8 Algorithm of method	47
3.3	Summary	48
CHAPTER 4	MATHEMATICAL MODELS	
4.1	Mathematical models	49
4.2	Linear model- 1	50
4.3	Linear model- 2	52
4.4	Linear model-3	53
4.5	Linear model-4	54
4.6	Nonlinear model-1	54
4.7	Nonlinear model-2	56
4.8	Nonlinear model-3	57
4.9	Discretized form of models	57

	4.9.1 Discretized form of linear model-1	57
	4.9.2 Discretized form of linear model-2	58
	4.9.3 Discretized form of linear model-3	58
	4.9.4 Discretized form of linear model-4	58
	4.9.5 Discretized form of nonlinear model-1	59
	4.9.6 Discretized form of nonlinear model-2	59
	4.9.7 Discretized form of nonlinear model-3	60
4.10	Two-dimensional (2-D) models	60
	4.10.1 Mathematical equations for the particle diffusion	61
	4.10.2 Mathematical equations for the bulk fluid	62
	4.10.3 Dimensionless form of 2-D model	63
	4.10.4 Numerical procedure for 2-D model	64
4.11	Summary	67
CHAPTER 5	STABILITY AND CONVERGENCE ANALYSIS	
5.1	Stability analysis	68
5.2	Convergence analysis	73
	5.2.1 Discretization process	73
	5.2.2 Time discretization	74
	5.2.3 Convergence criteria	75
5.3	Summary	78

CHAPTER 6 NUMERICAL RESULTS

6.1	Numerical results of linear model-1	79
	6.1.1 Comparison of analytic and numerical results	79
	6.1.2 Comparison with literature data	79
	6.1.3 Influence of number of elements	82
	6.1.4 Error analysis	82
	6.1.5 Stability analysis using norms and comparison with CHCM	85
6.2	Numerical results of linear model-2	85
	6.2.1 Comparison between analytic and numerical results	85
	6.2.2 Comparison with previous results	86
	6.2.3 Effect of number of elements	88
	6.2.4 Stability analysis and CPU time	88
6.3	Verification of linear model-3	90
	6.3.1 Comparison of numerical and analytic results	90
	6.3.2 Comparison of the number of elements	91
	6.3.3 Comparison with literature data in terms of relative error	91
	6.3.4 Stability analysis using QHCM and CPU time	91
	6.3.5 Effect of <i>Pe</i> and <i>Bi</i> on the concentration profile	92
6.4	Verification of linear model-4	96
	6.4.1 Effect of retardation coefficient (R_d)	96
	6.4.2 Effect of large R_d for different values of Pe	96
	6.4.3 Effect of Pe for the constant value of R_{\perp}	98

6.5	Results of nonlinear model-1	100
	6.5.1 Solution profile for concentration at exit level	100
	6.5.2 Comparison with literature data	102
	6.5.3 Comparison in terms of number of elements	102
	6.5.4 CPU time consumed in the whole process	105
	6.5.5 Effect of the division of the domain	106
	6.5.6 Rate of convergence and comparison with CHCM	106
	6.5.7 Effect of <i>Pe</i> on concentration profiles	108
	6.5.8 Influence of D_L on the concentration	109
	6.5.9 Influence of <i>u</i> on concentration	110
	6.5.10 Effect of L on the concentration	113
	6.5.11 Effect of bed porosity	114
	6.5.12 Surface plot representation	115
	6.5.13 Relation with the industrial parameters	118
	6.5.14 Simulation with experimental data	119
6.6	Verification of nonlinear model-2	124
6.7	Comparison of nonlinear model-1 and 2	128
6.8	Verification of nonlinear model-3	129
6.9	Verification/ Results of the two-dimensional model	133
	6.9.1 Comparison between experimental and numerical values	134
	6.9.2 Effect of some important parameters	136
6.10	Summary	140

CHAPTER 7 SIMULATION WITH EXPERIMENTAL DATA

7.1 Industry Profile	142
7.2 Analysis of industrial data	143
7.3 Results from nonlinear model-1	145
7.3.1 Effect of <i>Pe</i> on the concentration profile	145
7.3.2 Effect of porosity on the concentration profile	146
7.3.3 Effect of fiber consistency (C_F)	148
7.4 Results from nonlinear model-2	148
7.4.1 Effect of <i>Pe</i> on the concentration profile	149
7.4.2 Effect of bed porosity (e) on the concentration profile	149
7.5 Summary	150
CHAPTER 8 CONCLUSION AND FUTURE RECOMMENDATIONS	
8.1 Conclusion	151
8.2 Recommendations for the Industry	153
8.3 Future recommendations	153
REFERENCES	155
NOMENCLATURE	163