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CHAPTER 6 

NUMERICAL RESULTS 

In this section, the results of this study are described in detail. The results of linear, non-

linear and 2D models associated with pulp washing are obtained using the technique of 

QHCM. The comparisons are presented with previously published results to prove the 

efficiency and superiority of the present numerical scheme. Further, the convergence, 

stability, and efficiency of the method are checked and compared with the previous 

techniques.   

6.1 NUMERICAL RESULTS OF LINEAR MODEL-1 

The linear model -1 discussed in the last chapter is solved with the help of the proposed 

method, i.e., QHCM. The breakthrough curve is used to express the numerical results 

for the concentration of solute at the exit level. The present results are compared with 

the numerical results of Grähs (1974). Mittal et al. (2013) also derived the numerical 

solution of this model using CHCM and proved the superiority of the method over 

previous techniques. 

6.1.1 Comparison of Analytic and Numerical Results  

The linear model is solved using the present technique. The results for exit solute 

concentration with respect to time is obtained for Pe=1,10 and 40 by dividing the 

domain into 30 elements. The comparison of numerical results derived by applying 

QHCM with the results of Grähs (1974) is presented in Figure 6.1. It is further noticed 

from the figure that the numerical results derived using QHCM are in best match with 

analytic results. Also, the exit solute concentration is decreasing with an increase in 

time. Also, with the increase in time, the solution profiles for different values of Pe are 

converging to steady-state conditions which validates the convergence criteria.  

6.1.2 Comparison with Literature Data 

In this study, the numerical results achieved using QHCM are compared with numerical 

results using the CHCM derived by Mittal et al. (2013) for Pe = 1, 10, and 40. The 

solution profiles are obtained by dividing the whole domain into 30 elements. The 

comparison of QHCM and previously used technique CHCM is presented in Table 6.1. 

It is observed that the numerical value of the concentration of solute at the exit level 
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obtained with QHCM is decreasing more rapidly with time in comparison to CHCM. 

Moreover, the results derived using the present technique are in good agreement with 

the analytic solution. The numerical results are better than the earlier technique, i.e., 

CHCM, even for the large value of the parameter, the efficiency of the method is 

obtained because the solution profiles are smoothly converging to zero. The results of 

absolute error are compared between QHCM and CHCM for 20, 30, and 40 elements. 

The results are calculated for Pe=40 and are depicted in Figure 6.2. It is further noticed 

that the absolute error using QHCM is less in comparison with CHCM. Also, Figure 

6.2 portrayed that the numerical results show the least absolute error with the division 

of domain into more elements.  

Table 6.1 Comparison of exit solute concentration with respect to exact and numerical 

solutions 

 Pe = 1 Pe = 10 Pe = 40 

 Time Analytic QHCM  CHCM 

 (Mittal  

 et al.,   

 2013) 

Analytic QHCM CHCM 

(Mittal 

et al., 

2013) 

Analytic QHCM CHCM 

(Mittal 

et al., 

2013) 

0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 

0.3 3.326E-01 3.324E-01 3.315E-01 9.629E-01 9.620E-01 9.614E-01 1.000E+0 1.000E+0 9.620E-01 

0.6 1.612E-01 1.610E-01 1.597E-01 7.778E-01 7.761E-01 7.790E-01 9.828E-01 9.817E-01 7.768E-01 

0.9 3.784E-02 3.801E-02 3.799E-02 3.225E-01 3.202E-01 3.194E-01 4.108E-01 4.028E-01 3.219E-01 

1.2 1.833E-02 1.834E-02 1.807E-02 1.854E-01 1.851E-01 1.838E-01 1.463E-01 1.425E-01 1.850E-01 

1.5 4.304E-03 4.250E-03 4.583E-03 5.605E-02 5.596E-02 5.643E-02 8.823E-03 8.486E-03 5.595E-02 

1.8 2.085E-03 2.073E-03 2.376E-03 3.013E-02 3.009E-02 3.076E-02 1.727E-03 1.661E-03 3.009E-02 

2.1 4.895E-04 4.874E-04 7.283E-04 8.535E-03 8.526E-03 9.105E-03 5.119E-05 4.88E8-05 8.527E-03 

2.4 2.372E-04 2.328E-04 4.015E-04 4.518E-03 4.276E-03 4.895E-03 8.095E-06 7.627E-06 4.516E-03 

2.7 5.567E-05 5.527E-05 8.902E-05 1.259E-03 1.175E-03 1.394E-03 1.818E-07 1.850E-07 1.266E-03 

3 2.697E-05 2.654E-05 3.843E-05 6.629E-04 6.098E-04 7.345E-04 2.623E-08 4.157E-08 6.646E-04 
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Figure 6.1 Comparison of the exact solution and QHCM for 30 elements. 

 

Figure 6.2 Comparison of absolute error between QHCM and CHCM for Pe=40 
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6.1.3 Influence of Number of Elements 

The results for exit solute concentration by partitioning the domain into different 

elements help to check the computational cost of a numerical technique. The results for 

the concentration of solute for this model are obtained by dividing the domain into 

10,40,80 and120 elements. The effect of the division of the domain into different 

partitions on the solution profile is shown in Figure 6.3. The error ascertained by this 

method is minimal in the case of the number of elements N=40 and N=80. However, in 

the case for N=10, the results vary when compared with analytic ones. So, it can be 

observed that when the partitions are increased, the number of equations increases but 

the accuracy of the results compensates for it. Whereas, when the number of elements 

is increased to 120, the solution profile does not behave properly. 

6.1.4 Error Analysis 

The relative error helps to check the accuracy of the results. The formula for relative 

error is discussed in chapter 3. In the present study, the solution is obtained using 

QHCM, and a comparison with the analytic solution is made in terms of relative error. 

The results of relative error using QHCM and CHCM are graphically shown in Figures 

6.4 to 6.6. The decrease in relative error is observed when the number of elements is 

increased. It can be seen from Figure 6.4 that for Pe=1, the relative error in the case of 

CHCM with 10 elements fluctuates with a maximum magnitude of 1.4×10-1 

(approximately). However, in QHCM relative error is almost zero. Also, it can be seen 

from Figure 6.5 that for Pe=10, the magnitude of the relative error using QHCM is 

nearer to zero as compared with CHCM for when the domain is partitioned into 40 

elements. The relative error for QHCM, therefore, matches best with the analytic 

solution. However, when CHCM is applied, the magnitude of relative error goes down 

to 2.6×10-4 (approximately), which is comparatively less than for the value of Pe=1 and 

10. The relative error for both the methods is the same for the time up to 2 seconds but 

from 2 to 3 seconds, it starts decreasing in the case of CHCM. However, in QHCM 

relative error is almost zero and the results are found to be more stable and convergent 

in the case of QHCM as compared to CHCM. 
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Figure 6.3 Comparison of exit solute concentration for Pe=40 by dividing the domain 

into the various number of elements. 

 

 
Figure 6.4 Relative error comparison between QHCM and CHCM for Pe=1, M=10 
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Figure 6.5 Relative error comparison between QHCM and CHCM for Pe=10, M=40 

 

 
Figure 6.6 Relative error comparison between QHCM and CHCM for Pe=40 and 

M=40 
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6.1.5 Stability Analysis Using Norms and Comparison with CHCM 

The stability analysis for the QHCM is checked by using the supremum norms ( L


) 

and Euclidean norm (
2

L ) for the linear model. The maximum absolute error using 

QHCM and CHCM is compared with the solution given by Grähs (1974). In Table 6.2, 

the comparison of maximum norms ( L


) for both techniques is presented. It can be 

observed that the maximum absolute error using QHCM is least as compared with 

CHCM in all the cases. Even for the large value of Pe, a small amount of error is seen 

in the case of QHCM. Table 6.3 shows the comparison of the Euclidean norm for 

different values of Pe between the two methods. A major difference is observed 

between the two methods. It can be observed that the value of the Euclidean norm using 

QHCM is least as compared with CHCM in all the cases. Moreover, when the partitions 

are increased, a decrease in the Euclidean norm is observed. Also, both norms lie 

between 0 and 1. Keeping the above aspects in view, it can be concluded that the QHCM 

is a better technique to solve the BVPs. 

6.2 NUMERICAL RESULTS OF LINEAR MODEL-2 

The linear model -2 discussed is solved with the help of the proposed method. The 

numerical results derived for the concentration of solute at the exit level are expressed 

with the breakthrough curve. Brenner (1962) derived the exact solution of the model 

using the method of Laplace Transform. This model is also solved numerically by Arora 

et al. (2006) using OCFE and by Ganaie et al. (2013) using CHCM.   

6.2.1 Comparison Between Analytic and Numerical Results 

The QHCM is used to solve the problem and the comparison is made between 

numerical results and the exact solution. The comparison of results is shown in Table 

6.4. It is also noticed from the table that the concentration profile converges to zero 

quickly when there is an increase in time. A good agreement is seen between the 

numerical results and the exact solution.  
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Table 6.2. Comparison of L


norm CHCM and QHCM 

Number 

of 

elements 

Pe = 1 Pe = 10 Pe = 40 

CHCM QHCM CHCM QHCM CHCM QHCM 

M=10 3.991E-03 3.262E-03 4.876E-02 1.493E-03 2.801E-01 5.751E-02 

M=20 3.503E-03 8.101E-04 5.180E-03 4.100E-03 2.709E-01 1.923E-02 

M=30 2.562E-03 7.303E-04 3.040E-03 2.830E-03 2.690E-01 9.583E-03 

M=40 2.514E-03 5.804E-04 2.640E-03 2.200E-03 2.682E-01 7.552E-03 

 

Table 6.3. Comparison of 
2

L  norm CHCM and QHCM 

Number 

of 

elements 

Pe = 1 Pe = 10 Pe = 40 

CHCM QHCM CHCM QHCM CHCM QHCM 

M=10 2.412E-03 1.752E-03 9.025E-02 1.091E-02 1.663E-01 3.453E-02 

M=20 1.383E-03 3.091E-04 2.430E-03 2.120E-03 1.149E-01 8.165E-03 

M=30 8.091E-04 2.704E-04 1.133E-03 1.083E-03 9.236E-02 3.318E-03 

M=40 6.722E-04 2.856E-04 8.872E-04 7.117E-04 7.974E-02 2.175E-03 

 

6.2.2 Comparison with Previous Results 

The comparisons are made between the numerical results for concentration profiles at 

the exit level using the algorithm of QHCM with the numerical results obtained by 

Arora et al. (2006) using the technique OCFE and with the technique CHCM which is 

used by Ganaie et al. (2013). The relative error for derived numerical results of exit 

solute concentration is compared with the analytic solution for Pe=80 given by Brenner 

(1962).  The relative error is calculated results of Arora et al. (2006) (OCFE) and Ganaie 

et al. (2013) (CHCM) with analytic values of Brenner (1962). These errors are 

presented graphically in Figure 6.7. It is noted from the figure that the relative error 

with QHCM is negligible as compared to OCFE and CHCM.
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Table 6.4 Comparison between the exact solution and numerical results derived using 

QHCM  

 

Time 

Pe = 1 Pe = 40 Pe = 80 

Brenner 

(1962) 
QHCM 

Brenner 

(1962) 
QHCM 

Brenner 

(1962) 
QHCM 

0.0 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

0.2 9.9510E-01 9.9383E-01 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

0.4 8.9851E-01 8.9351E-01 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

0.6 7.1771E-01 7.1330E-01 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

0.8 5.3788E-01 5.3234E-01 9.7461E-01 9.7574E-01 9.9749E-01 9.9748E-01 

1.0 3.9090E-01 3.8611E-01 4.7780E-01 4.7836E-01 4.8431E-01 4.8855E-01 

1.2 2.8012E-01 2.7808E-01 4.4936E-02 4.5409E-02 9.2825E-03 9.3303E-03 

1.4 1.9925E-01 1.9890E-01 9.9034E-04 9.9231E-04 7.6158E-06 7.6242E-06 

1.6 1.4127E-01 1.4441E-01 7.9001E-06 7.9104E-06 7.1183E-10 7.0080E-10 

1.8 9.9870E-02 9.9853E-02 3.1110E-08 3.0927E-08 1.5032E-14 1.4942E-14 

2.0 7.0581E-02 7.0490E-02 7.4063E-11 7.3890E-11 -7.7170E-20 -1.4250E-17 

 

 

Figure 6.7 Relative error comparison of QHCM with OCFE and CHCM for Pe=80. 
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6.2.3 Effect of Number of Elements 

The selection of step size or division of domain plays important role in measuring 

accuracy. Arora et al. (2005) explained that the choice of large step size in the domain 

of space and time helps to maintain the best agreement for the numerical solution and 

analytical solution with minimum error. The model is solved for different partitions 

using the present method for Pe=40 and the results are presented in terms of relative 

error for a wider range division of domain in Figure 6.8. The relative error is calculated 

for the division of the domain into 20,40 and 80 elements. The relative error is 

approaching to zero as the domain is partitioned into more elements. Also, both 

numerical and analytic solutions are matching for the division of the domain into 80 

elements.  

 
Figure 6.8 Comparison of relative error by division of domain into different elements 

for Pe=40. 

6.2.4 Stability Analysis and CPU Time 

The relative error, norms, and CPU time play a very important role to check the 

efficiency of the method (Jannesari and Tatari, 2020). The reported CPU time is the 

total elapsed time of the entire process.  The model equation is solved for Pe=1, 10, and 

40 by dividing the domain into different elements. The numerical results of supremum 
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norms ( L
 ) and Euclidean norms ( 2

L ) for different partitions are computed and 

reported in Table 6.5. It is noticed from the table that both the norms lie within 0 and 1 

and this proves the stability of the method. Further, it can be discovered that both norms 

are decreasing when the domain is partitioned into more elements. The CPU time in 

solving the model is very less with a minimum time of 1.5 seconds and a maximum 

time is 3.92 seconds. Hence, the method with better accuracy is giving better accuracy 

with less CPU time.  

Also, the maximum absolute error derived using the exact solution given by Brenner 

(1962) for QHCM and CHCM is compared. It has been observed that for this model, 

the absolute error obtained using QHCM is less as compared to CHCM in all the cases 

given in Table 6.6. Further, a small amount of absolute error is seen in the case of 

QHCM, even for the large value of parameter Pe. Therefore, it can be concluded that 

numerical result obtained using QHCM agrees well with an analytic solution in 

comparison to CHCM. 

The values of the Euclidean norm using the analytic solution given by Brenner (1962) 

are calculated for CHCM and QHCM. The comparison of this norm between both 

techniques is presented in Table 6.7. It is observed that the results obtained using 

QHCM are either at par or below the error noticed by the CHCM. Hence, the stability 

conditions given by Arora et al. (2005) are satisfied for QHCM and better accuracy is 

achieved by using QHCM in comparison with CHCM. 

 

Table 6.5 Results for supremum norms ( L


), Euclidean norms (
2

L ) and CPU time 

M 2
L  L


 CPU time (in sec) 

Pe=1 Pe=10 P=40 Pe=1 Pe=10 Pe=40 Pe=1 Pe=10 Pe=40 

 10 3.832E-3 1.378E-3 5.120E-4 1.383E-2 1.461E-2 2.202E-2 1.72 1.47 1.51 

 20 3.741E-3 1.093E-3 4.892E-4 8.671E-3 9.323E-3 3.261E-3 2.51 2.32 2.14 

 30 3.674E-3 1.011E-3 4.757E-4 6.812E-3 7.380E-3 2.014E-3 2.93 2.81 2.81 

 40 3.380E-3 1.003E-3 4.102E-4 5.506E-3 6.731E-3 1.100E-3 3.90 3.73 3.80 
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Table 6.6 Comparison of maximum absolute error for CHCM and QHCM 
 

M Pe=1 Pe=10 Pe=40 

CHCM QHCM CHCM QHCM CHCM QHCM 

 10 1.951E-01 1.383E-02 2.440E-01 1.461E-02 2.441E-01 2.202E-02 

 20 1.745E-01 8.671E-03 2.193E-01 9.323E-03 2.100E-01 3.261E-03 

 30 1.672E-01 6.812E-03 2.101E-01 7.380E-03 1.985E-01 2.014E-03 

 40 1.646E-01 5.506E-03 2.053E-01 6.731E-03 1.912E-01 1.100E-03 

 

Table 6.7 Comparison of  
2

L  (Euclidean) norm for CHCM and QHCM 

 

M Pe=1 Pe=10 Pe=40 

CHCM QHCM CHCM QHCM CHCM QHCM 

 10 1.381E-01 3.832E-03 1.53E-01 1.378E-03 1.201E-01 5.120E-04 

 20 8.674E-02 3.741E-03 9.93E-02 1.093E-03 7.674E-02 4.892E-04 

 30 6.812E-02 3.674E-03 7.88E-02 1.011E-03 6.041E-02 4.757E-04 

 40 5.781E-02 3.380E-03 6.73E-02 1.003E-03 5.150E-02 4.102E-04 

6.3 VERIFICATION OF LINEAR MODEL-3 

The model is solved using the present method of QHCM. Zheng and Gu (1996) 

presented a detailed explanation of this model with the exact solution. Arora et al (2006) 

have compared the relative error of OCM and OCFE for this model and noticed 

improved results. Gupta and Kukreja (2012), Ganaie et al. (2013), and Robalo et al. 

(2013) also solved this model with CSCM, CHCM, and MFEM respectively. 

6.3.1 Comparison of Numerical and Analytic Results 

The results obtained using the QHCM for different parameters are summarized in Table 

6.8 and the values are in conformity with the analytic solution obtained by Zheng and 

Gu (1996). The numerical results are derived by dividing the domain into 25 and 50 

number of elements for different ranges of parameters such as Pe, Bi, and µ. The best 

match of numerical and analytic results is noticed in the table when more elements are 

added in the partitions. It is also observed that the difference between numerical and 

analytic results decreases when the number of elements in the domain increases.  
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6.3.2 Comparison of the Number of Elements 

The results obtained using the QHCM are compared with the previously published 

result of Ganaie et al. (2013) using CHCM. The numerical results compared for Pe=10, 

Bi=1.5, µ=0.0142 and Pe=20, Bi=5, µ=0.033 and summarized it in Table 6.9. The exact 

solution obtained by Zheng and Gu (1996) is considered for comparison. Ganaie et al. 

(2013) partitioned the domain into 200 elements, but, in this work, the results match 

exacts ones only with 50 number of elements. This proves that the present results are 

better with a smaller number of equations. So, the computational cost is reduced with 

the present technique.  

6.3.3 Comparison with Literature Data in Terms of Relative Error 

A comparison between the QHCM, CSCM (Gupta and Kukreja, 2012), MFEM (Robalo 

et al., 2013), and CHCM (Ganaie et al., 2013) is made for different parameters by taking 

the same number of partitions of the domain. The results are derived for parameters 

Pe=20, Bi=5, µ=0.033. The results of relative error from these methods and present 

technique are compared in Figure 6.9. Also, the results of relative error for Pe=10, 

Bi=1.5, and µ=0.0142 are shown in Figure 6.10. It is noticed that relative error is least 

in the case of QHCM as compared to other methods in both cases as shown in these 

figures.  

6.3.4 Stability analysis using QHCM and CPU Time  

The stability of the present method is checked by comparing the results for supremum 

norms ( L
 ) and Euclidean norms ( 2

L ) with previously published results. Both 

norms are calculated by using the numerical values for exit solute concentration of 

published results with CHCM, CSCM, and MFEM. The norms are calculated for 

Pe=10, Bi=1.5, µ=0.0142, and Pe=20, Bi=5, µ=0.033, and the results are presented in 

Table 6.10.  It is evident from the table that values calculated for both the norms 2
L

and L
using QHCM are having least value than previously published methods and 

hence the method is found to be more stable. The table also reflects those values of both 

2
L and L

  norms using QHCM are decreasing when the number of elements is 

increased.  
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The time consumed to solve the model is also an important factor to implement the 

method for numerical solutions. The CPU time to complete the process is also noted 

while performing the processor and compared with the published results of Gupta and 

Kukreja (2012) in Table 6.11. It is observed from the table that the CPU time consumed 

using the QHCM is 1.9730 seconds when the domain is divided into 25 elements, while 

Gupta and Kukreja (2012) reported that it takes 6.6746 seconds using the CSCM. Also, 

Gupta and Kukreja (2012) have shown in their study that CSCM takes less time than 

OCM and OCFE. However, the present study reflects the fact that QHCM takes very 

little time as compared to the previous methods.  

6.3.5 Effect of Pe and Bi on the Concentration Profile 

The Pe helps to estimate the results with more accuracy (Jia et al., 2013). Also, 

Szukiewicz (2001) observed that the accuracy of calculations is higher influenced by 

Bi. The comparison of the solution profile for different values of the Bi, Pe, and µ is 

derived using the present method and presented in Figure 6.11. It is observed that when 

Pe is greater than 20 and Bi is greater than 5, the adsorbed solute takes a larger time to 

strain out from the surface of the fiber. It is for this reason that small Pe creates more 

back mixing and small Bi reduces the equilibrium constant. In a study, Arora et al. 

(2006) and Ganaie et al. (2013) also concluded that 20Pe   and 5Bi   are of practical 

importance. 
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Table 6.8 Comparison of numerical results with exact for different Pe and Bi 

Time  

QHCM QHCM QHCM 

Pe=10, Bi=1.5, µ =0.0142 Pe=20, Bi=5, µ =0.033 Pe=60, Bi=7.5, µ =0.033 

Exact N =25 N =50 Exact N =25 N =50 Exact N =25 N=50 

0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 

0.2 9.998E-01 9.994E-01 9.998E-01 9.983E-01 9.980E-01 9.983E-01 9.991E-01 9.990E-01 9.991E-01 

0.4 9.620E-01 9.614E-01 9.620E-01 9.938E-01 9.941E-01 9.938E-01 9.983E-01 9.979E-01 9.983E-01 

0.6 7.768E-01 7.747E-01 7.768E-01 9.083E-01 9.059E-01 9.083E-01 9.937E-01 9.928E-01 9.935E-01 

0.8 5.272E-01 5.253E-01 5.272E-01 6.533E-01 6.488E-01 6.533E-01 8.508E-01 8.460E-01 8.506E-01 

1 3.218E-01 3.201E-01 3.218E-01 3.709E-01 3.665E-01 3.709E-01 4.254E-01 4.201E-01 4.253E-01 

1.2 1.849E-01 1.848E-01 1.849E-01 1.784E-01 1.767E-01 1.784E-01 1.160E-01 1.149E-01 1.160E-01 

1.4 1.026E-01 1.021E-01 1.026E-01 7.695E-02 7.569E-02 7.698E-02 2.004E-02 1.959E-02 2.003E-02 

1.6 5.585E-02 5.558E-02 5.585E-02 3.090E-02 3.038E-02 3.090E-02 2.520E-03 2.458E-03 2.520E-03 

1.8 3.001E-02 2.989E-02 3.001E-02 1.182E-02 1.167E-02 1.182E-02 2.540E-04 2.477E-04 2.540E-04 

2 1.600E-02 1.598E-02 1.601E-02 4.379E-03 4.308E-03 4.379E-03 2.179E-05 2.156E-05 2.179E-05 
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Table 6.9 Comparison of numerical results of QHCM with CHCM 

 

Time 

Pe=10, Bi=1.5, µ=0.0142 Pe=20, Bi=5, µ=0.033 

Exact 
N=200 

(CHCM) 

N=50 

QHCM) 
Exact 

N=200 

(CHCM) 

N=50 

(QHCM) 

0 1.000E+00 1.000E+00 1.000E+00 1.000E+00 
1.000E+0

0 
1.000E+00 

0.2 9.998E-01 9.994E-01 9.998E-01 9.983E-01 9.983E-01 9.983E-01 

0.4 9.620E-01 9.620E-01 9.620E-01 9.938E-01 9.938E-01 9.938E-01 

0.6 7.768E-01 7.768E-01 7.768E-01 9.083E-01 9.083E-01 9.083E-01 

0.8 5.272E-01 5.272E-01 5.272E-01 6.533E-01 6.533E-01 6.533E-01 

1 3.218E-01 3.218E-01 3.218E-01 3.709E-01 3.709E-01 3.709E-01 

1.2 1.849E-01 1.849E-01 1.849E-01 1.784E-01 1.784E-01 1.784E-01 

1.4 1.026E-01 1.026E-01 1.026E-01 7.695E-02 7.692E-02 7.798E-02 

1.6 5.585E-02 5.585E-02 5.585E-02 3.090E-02 3.090E-02 3.090E-02 

1.8 3.001E-02 3.001E-02 3.001E-02 1.182E-02 1.182E-02 1.182E-02 

2 1.600E-02 1.600E-02 1.600E-02 4.379E-03 4.378E-03 4.379E-03 

 

Table 6.10 Comparison of results of  
2

L  and L


norms 

 

 

Table 6.11 Comparison in total elapsed time (in sec) between QHCM and CSCM for 

Pe=60, Bi=7.5, and µ=0.033 

 

Number of elements (N) QHCM CSCM 

25 1.9730 6.6746 

50 2.8427 7.6188 

100 5.2921 9.7043 

 
 

 
Pe=10, Bi=1.5, µ=0.0142 Pe=20, Bi=5, µ=0.033 

QHCM MFEM CSCM CHCM QHCM MFEM CSCM CHCM 

2
L  3.626E-6 6.026E-6 5.8515E-6 1.771E-5 3.441E-6 5.483E-6 2.281E-6 4.881E-5 

L


 9.900E-6 2.580E-5 1.000E-5 6.000E-5 1.000E-5 2.000E-5 1.000E-5 2.100E-4 
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Figure 6.9 Relative Error comparison for Pe=20, Bi=5, µ=0.033 

 

Figure 6.10 Comparison of CSCM, CHCM and QHCM for Pe=10, Bi=1.5, µ=0.0142 
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6.4 VERIFICATION OF LINEAR MODEL-4 
 

The results for exit solute concentration are obtained for different values dR (retardation 

coefficient) which is defined as the removal rate of adsorbed solutes on the particle 

surface. Liao and Shiau (2000) derived the analytic solution for this problem. Arora et 

al. (2006) solved this model using OCFE and presented the relative error of the 

numerical solution for different values of Pe and dR .  

6.4.1 Effect of Retardation Coefficient ( dR ) 

Figure 6.12 displays the comparison of solution profiles for different values dR with 

Pe=40. The figure indicates that for the constant value of Pe, the breakthrough curve 

moves slowly to a steady state condition and a large breakthrough time is needed for an 

increased value of dR . It is observed that better washing can be achieved with an 

increase dR  from 0.85. Arora et al. (2006) explained that better washing dR must be 

greater than 1.  

6.4.2 Effect of large dR  for different values of Pe  

The effect of large dR  varying from 2 to 10 on solution profiles is displayed in Figure 

6.13 for different ranges of Pe. The figure explains that when Pe=40 and dR =5, the 

solute (black liquor) is not detached from the pulp, as the exit concentration of solute 

is not reducing. Figure 6.13 displays that the value of dR =2 gives better results when 

the Pe is decreased. For Pe=40, the solution profile for dR =2 moves to steady state 

condition while for dR = 5, the solution profiles are not converging to steady state 

condition. It is observed from the figure that when dR  is increased from 2, the 

breakthrough curves become broadened, and the solution profiles do not reach steady 

state condition and take a long time to converge to steady state condition. It is noticed 

from the figure that as soon as the value of dR is increased, the curve of the mass-

transfer  zone  does  not show better  washing results.  The  constant  value  of dR  and  
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Figure 6.11 Effect of different values of Pe and Bi on the concentration of solute at 

exit level 

 

 

 
Figure 6.12 Effect on exit solute concentration for different values of Rd  
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decreasing value of Pe means the dispersion coefficient is increased in the case when 

the length of bed thickness and interstitial velocity both are kept unchanged. The reason 

is that the increase in dR , affects the space and time gradients in comparison with the 

dispersion term. Moreover, when the value of dR  is increased, there is a decrease in 

bed porosity and the detachment rate becomes constant which helps in reducing the 

impurities removal rate which is adsorbed on the surface. Hence, the solution profile 

takes more time to reach the steady state condition.  

6.4.3 Effect of Pe for the Constant Value of Rd  

Figure 6.14 displays the behavior of the washing curve for different ranges of Pe when 

the value of dR  is considered constant. It is obvious from the figure that when dR  is a 

constant, the higher the value of Pe and the steeper mass transfer zone will be obtained. 

According to the results noticed in figure, for a large value of Pe, the effluent 

concentration of adsorbate will quickly reach the influent concentration, but it takes a 

large breakthrough time. In the case when dR is constant, the small value of Pe provides 

more mixing. The present solute started to diffuse out in a short period. The curves 

started to give coincident results when Pe is increased from 40. When the value of Pe 

is larger than 100 the breakthrough curve instantly started decreasing. In this case, the 

washing process is not proper, and more diffusion is caused which makes the solute 

diffuse out in a piston-like manner. Karahan (2006) supported the simulations of 

advection-diffusion depending on higher values of Pe. 
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Figure 6.13 Effect on exit solute concentration for large values of dR   

 

Figure 6.14 For dR =1, the effect of different values of Pe on the solute concentration  
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6.5 RESULTS OF NONLINEAR MODEL-1 

The nonlinear model is solved using the QHCM for different values of parameters such 

as Pe, bed porosity, axial dispersion coefficient, and cake thickness. As the non-linear 

problem does not have an analytic solution, the model equations are simulated using 

the experimental data. The results obtained for this model are verified using the 

experimental data of Grähs (1974), Kukreja (1996), and Arora and Potuček (2012). This 

data is related to the research experiments which are performed for washing wood pulp. 

The applicability of the model is checked in the study using actual industrial data taken 

from a brown stock washer (for pulp washing) at the fourth stage of a paper mill. The 

detailed data of experimental values given by these authors are presented in Tables 6.12 

to 6.14. Although the available experimental data varies across the paper mills, the only 

purpose of applying this method is to prove its efficiency in solving the model. 

6.5.1 Solution Profile for Concentration at Exit Level  

The non-linear model of displacement washing is solved numerically using QHCM. 

The mathematical model explained above is solved using the experimental data of 

Grähs (1974) tabulated in Table 6.15 for simulation. The method is applied by dividing 

the domain into the number of elements M=20,40,80. The model is solved by taking 

different values of Pe=1, 10, and 40, and the output results in terms of concentration 

are presented in Table 6.15. It is seen from the table that the concentration of solute at 

the exit level approaches zero smoothly when the number of elements (M) in the 

domain is increased. Besides, the solution profiles in all cases are converging to steady-

state conditions with an increase in time. This proves the convergence of the method 

according to Onah (2002).  
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Table 6.12 Experimental data of washing cell of Grähs (1974) 

Parameters Values Unit 

ɛ 0.925-0.957 - 

A0 0.01195 m3/kg 

B0 2.708 m3/kg 

C0 0.225-0.655 kg/m3 

CS 0.000 kg/m3 

CF 63.8-106.9 kg/m3 

L 0.102-0.166 m 

k1/k2 4.0x10-4 – 7.0x10-5 - 

 

 

Table 6.13 Washing cell experimental data of Kukreja (1996) 

Parameters Values Unit 

ɛ 0.954-0.986 - 

A0 0.931 m3/kg 

B0 0.536 m3/kg 

C0 77.3-158.95 kg/m3 

CF 22-69.20 kg/m3 

L 0.005-0.007 m 

k1/k2 2 x10-4 – 7.0x10-4 - 

 

Table 6.14 Experimental data of washing cell (Arora and Potuček,2012) 

Parameters Values Unit 

ɛ 0.955-0.968 - 

A0 0.00052 m3/kg 

B0 0.000052 m3/kg 

C0 8.3341-8.3782 kg/m3 

u (1.9321-1.9584) x10-3 m/s 

CF 47.059-66.176 kg/m3 

L 0.6960-1.0531 m 

k1/k2 (2.9389-4.1104) x10-3 - 
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6.5.2. Comparison with Literature Data 

In this part, the numerical results derived for exit solute concentration with the proposed 

method are compared with the technique of CHCM used by Mittal et al. (2013). The 

solution profiles are obtained for the exit solute concentration using QHCM with 

different parameters. The numerical results obtained are tabulated in Table 6.16. The 

results are derived for Pe=1,10 &40 for division of domain into 20, 40 & 80 elements. 

It can be noticed from Table that the concentration of solute at exit level with the 

QHCM is decreasing with time in comparison to the CHCM used by Mittal et al. (2013). 

The results confirm that the exit solute concentration profiles are converging to the 

steady-state condition with an increase in Pe and partitions of the domain for different 

values of Pe. It is also noted that improved washing can be attained for Pe=40. In this 

regard, Al-Jabari et al. (1994) have exhibited an optimum scale of Pe to be less than or 

equal to 40.  

6.5.3 Comparison in Terms of Number of Elements 

The nonlinear model is solved with QHCM for Pe=40 and the experimental data by 

Arora et al. (2006) is used to validate the numerical results. Ganaie et al. (2014) solved 

numerically this model for Pe=40 by using the technique CHCM. In this part, the results 

obtained using the QHCM are compared with the previously published result of Ganaie 

et al. (2014). The numerical results using QHCM are derived for the partition of the 

domain into M=50 and 100 elements. Ganaie et al. (2014) derived the results for the 

partition of the domain into M=100,200 and 300 elements and results are presented in 

Table 6.17. It is noticed that the results obtained using QHCM by dividing the domain 

into 50 elements are the same as the results for 100 elements with CHCM. Also, the 

results obtained using QHCM by dividing the domain into 100 elements are the same 

as the results for 300 elements with CHCM. This proves that we can derive better results 

with less number of equations. So, the computational cost is reduced with the present 

technique.  
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Table 6.15 Numerical results of concentration of solute at exit level using QHCM for nonlinear model with different range of Pe and M 

Time 
Pe =1 Pe =10 Pe =40 

M = 20 M = 40 M= 80 M = 20 M = 40 M = 80 M = 20 M = 40 M = 80 

0 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

0.2 9.101E-01 9.209E-01 9.251E-01 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 

0.4 7.423E-01 7.532E-01 7.584E-01 9.791E-01 9.831E-01 9.843E-01 1.000E+00 1.000E+00 1.000E+00 

0.6 5.980E-01 6.076E-01 6.115E-01 8.582E-01 8.696E-01 8.741E-01 9.891E-01 9.916E-01 9.922E-01 

0.8 4.813E-01 4.891E-01 4.927E-01 6.593E-01 6.739E-01 6.806E-01 8.509E-01 8.651E-01 8.721E-01 

1.0 3.887E-01 3.940E-01 3.972E-01 4.624E-01 4.750E-01 4.813E-01 5.384E-01 5.608E-01 5.717E-01 

1.2 3.138E-01 3.186E-01 3.203E-01 3.061E-01 3.151E-01 3.201E-01 2.526E-01 2.684E-01 2.762E-01 

1.4 2.533E-01 2.578E-01 2.594E-01 1.940E-01 2.017E-01 2.047E-01 9.141E-02 9.902E-02 1.031E-01 

1.6 2.051E-01 2.081E-01 2.090E-01 1.207E-01 1.243E-01 1.263E-01 2.720E-02 2.990E-02 3.134E-02 

1.8 1.650E-01 1.689E-01 1.691E-01 7.271E-02 7.538E-02 7.669E-02 7.032E-03 7.801E-03 8.201E-03 

2.0 1.344E-01 1.360E-01 1.379E-01 4.343E-02 4.512E-02 4.591E-02 1.633E-03 1.831E-03 1.930E-03 

2.2 1.083E-01 1.105E-01 1.103E-01 2.575E-02 2.671E-02 2.724E-02 3.511E-04 3.948E-04 4.177E-04 

2.4 8.741E-02 8.873E-02 8.937E-02 1.510E-02 1.577E-02 1.601E-02 7.118E-05 8.033E-05 8.514E-05 

2.6 7.079E-02 7.171E-02 7.228E-02 8.874E-03 9.214E-03 9.381E-03 1.385E-05 1.562E-05 1.668E-05 

2.8 5.721E-02 5.807E-02 5.844E-02 5.181E-03 5.382E-03 5.485E-03 2.570E-06 2.920E-06 3.111E-06 

3.0 4.624E-02 4.690E-02 4.721E-02 3.013E-03 3.139E-03 3.192E-03 4.672E-07 5.321E-07 5.660E-07 
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Table 6.16 Comparison of solution using QHCM and CHCM with input parameters 

0 0 00.278; 0.01195; 2.708; 0.000; 0.942; 106.9s FC A B C e C       

  QHCM CHCM QHCM CHCM QHCM CHCM 

h Time Pe =1 Pe =10 Pe=40 

0.05 0.6 6.463E-01 6.608E−01
 

9.104E-01 9.235E−01
 

9.969E-01 9.982E−01
 

 1.2 3.807E-01 3.909E−01
 

4.596E-01 4.779E−01
 

5.330E-01 5.601E−01
 

 1.8 2.309E-01 2.382E−01
 

1.809E-01 1.889E−01
 

9.292E-02 1.052E−01
 

 2.4 1.432E-01 1.472E−01
 

6.277E-02 6.515E−02
 

7.076E-03 7.214E−03
 

 3.0 8.929E-02 9.141E−02
 

2.047E-02 2.075E−02
 

2.689E-04 2.691E−04
 

0.025 0.6 6.559E-01 6.633E−01
 

9.188E-01 9.252E−01
 

9.975E-01 9.983E−01
 

 1.2 3.864E-01 3.922E−01
 

4.705E-01 4.800E−01
 

5.478E-01 5.635E−01
 

 1.8 2.354E-01 2.390E−01
 

1.860E-01 1.899E−01
 

1.007E-01 1.064E−01
 

 2.4 1.460E-01 1.476E−01
 

6.482E-02 6.554E−02
 

8.245E-03 7.330E−03
 

 3.0 9.075E-02 9.170E−02
 

2.118E-02 2.088E−02
 

4.184E-04 2.741E−04
 

0.012 0.6 6.608E-01 6.645E−01
 

9.230E-01 9.261E−01
 

9.979E-01 9.984E−01
 

 1.2 3.887E-01 3.929E−01
 

4.755E-01 4.811E−01
 

5.590E-01 5.653E−01
 

 1.8 2.344E-01 2.394E−01
 

1.885E-01 1.905E−01
 

1.027E-01 1.071E−01
 

 2.4 1.443E-01 1.479E−01
 

6.574E-02 6.574E−02
 

7.867E-03 7.389E−03
 

 3.0 8.993E-02 9.184E−02
 

2.150E-02 2.095E−02
 

2.739E-04 2.751E−04
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Table 6.17 Comparison of solution using QHCM and CHCM with input parameters 

0 0 08.33; 0.00052; 0.000625; 0.005; 0.96; 66.17s FC A B C e C       

 QHCM CHCM 

Time M=50 M=100 M=100 M=200 M=300 

0.0 1.0000E+0 1.0000E+0 1.0000E+0 1.0000E+0 1.0000E+0 

0.2 1.0000E+0 1.0000E+0 1.0000E+0 1.0000E+0 1.0000E+0 

0.4 9.9998E-01 9.9998E-01 9.9998E-01 9.9999E-01 9.9999E-01 

0.6 9.8525E-01 9.8653E-01 9.8629E-01 9.8693E-01 9.8714E-01 

0.8 8.0515E-01 8.1270E-01 8.1098E-01 8.1476E-01 8.1602E-01 

1.0 4.4102E-01 4.5008E-01 4.4752E-01 4.5204E-01 4.5354E-01 

1.2 1.6522E-01 1.7011E-01 1.6848E-01 1.7092E-01 1.7173E-01 

1.4 4.6837E-02 4.8517E-02 4.4788E-02 4.8723E-02 4.9004E-02 

1.6 1.0931E-02 1.1373E-02 1.1182E-03 1.1404E-02 1.1428E-02 

1.8 2.2251E-03 2.3255E-03 2.2752E-03 2.3239E-03 2.3401E-03 

2.0 4.1062E-04 4.3121E-04 4.1935E-04 4.2879E-04 4.3195E-04 

 

6.5.4 CPU Time Consumed in the Whole Process 

The CPU time used for the whole process for a range of Pe is presented in Table 6.18. 

The results are derived for different partitions of the domain. The CPU time is 

considered in all cases for Pe=1,10,40,100 by dividing the domain into 20,40 and 80 

elements. It is depicted that the CPU time is lying between 1.001 to 1.815 seconds. 

Also, the least CPU time for Pe=1; N=20 is 1.001 seconds, and the CPU time for Pe=1; 

N=80 is 1.815 seconds. Although the CPU time is increasing when the domain is 

partitioned into more elements, however, the results are derived with comparatively 

less CPU time and not much effect of this is observed with the increase in Pe. 
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Table 6.18 CPU time (in a sec) for the concentration of solute by dividing the domain 

into different elements 

 Pe = 1 Pe = 10 Pe = 40 Pe = 100 

Length of each 

subinterval (h)  
QHCM QHCM QHCM QHCM 

0.05 1.001 1.007 1.033 1.038 

0.025 1.142 1.147 1.113 1.115 

0.0125 1.815 1.631 1.658 1.545 

 

6.5.5 Effect of the Division of the Domain 

Generally, when the domain is partitioned by adding more points or when the number 

of elements is increased, better results are observed in solution profiles. The 

concentration profile results for Pe=40 by division of domain into different elements 

are presented in Figure 6.15. The concentration profile for Pe=32,64,128and 256 

overlaps. In other words, when the domain is divided into more than 30 elements, the 

results for concentration profiles are identical and the breakthrough curves coincide. 

Hence, using the present method, no more effect of an increase in elements is seen when 

the elements are increased. It supports that we can derive the results for solution profile 

with the fewer equation that reduces the mathematical complexity, time, and effort. It 

proves that we can derive the results with a minimum number of equations using 

QHCM. Hence, the mathematical complexity is reduced in this technique. 

6.5.6 Rate of Convergence and Comparison with CHCM 

In this part, the expression used to find the rate of convergence is taken from Farrell 

and Hegarty (1991) as discussed in chapter 3. To prove the efficiency of QHCM over 

CHCM, the rate of convergence of both techniques is calculated. The comparison of 

the rate of convergence for different ranges of Pe from 1 to 300 is presented in Table 

6.19. It is seen from this table that the rate of convergence using the present method is 

noticed to be nearer to one than the previous technique CHCM. Also, it can be observed 

that QHCM gives a better result for the rate of convergence than CHCM. So, the 

efficiency of the method is proved.  
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Figure 6.15 Exit solute concentration profile for Pe=40 for division of domain into 

different elements 

 

Table 6.19 Comparison of rate of convergence of CHCM and QHCM 
 

M  
Pe=1 Pe=10 Pe=20 

QHCM CHCM QHCM CHCM QHCM CHCM 

2 0.948079 0.948127 1.026624 1.013162 1.190028 1.173365 

4 1.014312 0.968717 0.983575 0.888302 1.085259 0.902669 

8 0.973431 0.978063 0.984443 0.915241 0.936818 0.865635 

16 1.006082 0.993243 1.056620 0.949505 1.056206 0.911152 

32 1.015682 0.994233 0.976189 0.972693 0.945633 0.943669 

M 
Pe=40 Pe=100 Pe=300 

QHCM CHCM QHCM CHCM QHCM CHCM 

2 1.185371 1.183820 1.016121 0.962791 0.898063 0.721321 

4 1.021715 1.111741 1.137504 1.330525 0.976559 0.971066 

8 1.003269 0.807817 1.014903 1.076677 1.166885 1.463702 

16 0.989565 0.846704 0.985348 0.734532 1.222787 1.302781 

32 0.902025 0.904348 0.930329 0.796253 1.014869 0.569730 
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6.5.7 Effect of Pe on Concentration Profiles 

The behavior of solution profiles for exit solute concentration with different parameters 

is shown by breakthrough curves. The Pe which is the ratio of advection to diffusion is 

mainly considered a basic factor to describe the behavior of displacement washing. 

(Makinde and Animasaun, 2016). It is therefore affected by the diffusion coefficient. 

The advection dominate diffusion in the case of Pe>1 and diffusion dominate advection 

in the situation when Pe is less than 1. Jannesari and Tatari (2020) suggested that to 

avoid the situation of oscillatory numerical solutions the choice of these parameters 

plays an important role in the discretization process. These parameters should be chosen 

according to the need to attain stability.  

The outcomes of exit solute concentration are expressed as breakthrough curves for a 

wider range of Pe varying from lower to higher. The concentration profiles at the exit 

level approach steady-state condition with the increase in time. The solution profiles 

for small Pe are presented in Figure 6.16. It is noticed from the figure that concentration 

profiles are vertiginous when Pe is very small and, in this situation, much time is taken 

by solute to come out from the pores of particle. This happens because diffusion plays 

a leading role for a small value of Pe whereas the interstitial velocity is small, and the 

concentration profiles reach the situation of slow convergence. Further, as Pe is close 

to zero, the axial dispersion coefficient is noticed to be increasing followed by a rise in 

the back mixing effect whereas, the cake thickness and interstitial velocity remained 

constant. It is also observed that in this state, the value of added fluid quickly mixes 

with pulp and the same amount of black liquor is discharged from the pulp. This is a 

case of perfect mixing.  

Perfect mixing: Arora et al. (2006) explained that this is a situation when Pe is 

negligible, or Pe is nearer to 0 because the axial dispersion coefficient is in dominating 

condition. This is a state when the introduced solvent immediately mixes up into the 

bed through the bed and the fluid comes out by an equal amount from the bed. The time 

taken by solute to diffuse out becomes indefinitely large due to the rapid increase in DL.  

Further, the effect of large Pe on concentration profiles is depicted in Figure 6.17. It is 

noticed that when the value of Pe is increased, the washing time decreases steeply. It 

specifies that a large value of Pe will make the axial dispersion coefficient smaller, and 

more solute will dispense from the pores of the particle. This is a state when the original 
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contents from the bed are enforced to get out as a piston-like style when the displacing 

fluid is introduced. This is a case of perfect displacement (Pouteck,1997). 

Perfect displacement: This is a situation when Pe is indefinitely large, or Pe approaches 

infinite value, and the dispersion coefficient is close to zero. In this case, the contents 

initially attached to the pulp bed are forced out in a piston-like fashion by the displacing 

liquid. Moreover, when Pe increases, the concentration at the exit level approaches to 

steady state condition more rapidly with time. 

In an ideal situation, the soluble impurities lying within the pulp washing bed cannot 

be properly removed. Although the medium range of Pe is preferred because more time 

is taken by the residing solute to wash out and concentration profiles are slowly 

converging to zero, this is the case of quite an acceptability. Hence, the industries need 

an optimum scale of Pe to keep up a balance between the washing time and omission 

of impurities (Potůček, 1997). Al-Jabari et al. (1994) demonstrated that better washing 

is attained for an optimum scale of Pe between 30 and 50. The study supported that the 

choice of Pe mainly affects the washing process. Practically, the industry must maintain 

parity among the exclusion of impurities and washing time. Further, it was also 

exhibited that flow characterization of pulp fiber-packed beds can be better illustrated 

by Pe = 40. Figure 6.18 signifies that the results attained using QHCM for a parameter 

with a medium range are proved to be true in the study. The optimum washing is 

achieved in this situation. It can be observed from the figure that the solute 

concentration at the exit level is best described for the value of Pe having a medium 

range. In this regard, Jannesari and Tatari (2020) also explained the exit solute 

concentration profile for this range. 

6.5.8 Influence of DL on the Concentration  

The axial dispersion coefficient plays a prominent role in the washing of pulp fibre bed 

process which is inversely proportional to Pe. Carrara et al. (2003) experimentally 

estimated the axial dispersion coefficient (DL) which affects the output results. Jiwari 

et al. (2018) explained an extensive range of solution profiles affected by a wide range 

of diffusion coefficients.  

The effect of DL is studied for the nonlinear model and presented in Figure 6.19. The 

role of diffusion is prominent in the pulp washing process when the value of DL is more. 

It is noticed from the figure that an increase in DL rises the level in back mixing and 
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black liquor solute removal is reduced. Due to this fact, the solute adsorbed on fiber 

surface remains attached and also needs more time to remove which makes the washing 

process improper. In this situation, the solution profile converges slowly. Also, the 

figure depicted that when the value of DL decreases and the value of Pe increases, the 

washing efficiency increases. In the case of small DL, the solute (black liquor) was 

removed in a better way due to less back mixing. It results in increasing washing 

efficiency. So small value of DL improves washing and makes the washing operation 

effective. The studies of Gupta et al. (2015), and Kukreja and Ray (2009) also supported 

this result. 

6.5.9 Influence of u on Concentration  

The velocity index also lies in the category of important factors which generally affect 

the solute concentration (Animasaun et al., 2019). It is directly proportional to the Pe. 

The increase in interstitial velocity causes an increase in Pe and this diminishes the 

effect of diffusion of solute from the pores of the particle. Also, the rate of increase in 

u is governed by the bed porosity and particle geometry (Trinh et al., 1989). Carrara et 

al. (2003) proved that the most common state in a tabular reactor happens for the range 

of Pe from 20 to 100 and it also depends on superficial velocity. The study also revealed 

that the experimental behavior of plug-flow models can be predicted with high accuracy 

by the specific range of these parameters. 

The effect of interstitial velocity on the pulp washing curve is expressed in Figure 6.20. 

It illustrates that velocity does not significantly affect the shape of the washing curve. 

Potůček (1997) also supported this fact and observed the linear relation between DL and 

u. While the studies of Lee (1979); Sridhar (1999) have shown that with the introduction 

of little flow of fluid the black liquor is easily removed as compared to the high flow. 

On the other hand, the overall interstitial velocity on account of an increase in axial 

dispersion does not affect the concentration profiles.   
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Figure 6.16 Influence of small value of Pe on the concentration profile
 

  

 

Figure 6.17 Influence of large value of Pe on the concentration profile
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Figure 6.18 Influence of Pe on exit solute concentration 

 
Figure 6.19 Influence of DL on concentration profiles for u=4.0E-03 and L=0.02. 
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Figure 6.20 Influence of u on concentration profile for L=0.02 and DL =5.9E-06 

 

6.5.10 Effect of L on the Concentration  

As discussed by Sharma et al. (2018), the concentration of fluid is significantly affected 

by some other important parameter such as cake thickness. The thickness of the cake 

influences the concentration profiles when the Pe is high. This effect of change in cake 

thickness is illustrated in Figure 6.21. The figure shows the decrease in breakthrough 

time when the value of L is slightly increased from 0.02cm, but the concentration 

profiles are found to be overlapped when the value of L is increased from 0.04 cm. 

Hence, better washing can be attained when the cake thickness is increased because 

more value of L enables more amount of solute to disperse out from the pores of the 

cake. Lee (1979); Arora et al. (2006); Mittal et al. (2013) also concluded that similar 

consequences of cake thickness.  
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Figure 6.21 Influence of L on concentration when u=4.0E-03 and DL =5.9E-06. 

6.5.11 Effect of Bed Porosity  

The porous nature of the pulp fiber bed is an essential factor in the washing procedure. 

Although washing operation is mainly influenced by Pe, yet the porosity is another 

parameter that influences the flow, and the washing process. This depends on the 

geometry of the packed bed (Augier et al., 2010).  Potůček (1997) explained that the 

type of pulp or fiber characteristics is the main variable that affects the dispersion 

coefficient. Despite this, the average pore size, difference in geometry and pore size 

distribution that occurs in fiber material have an effect of dispersion in the pulp bed.
 

The effect of porosity on the concentration of solute at the exit level is described in 

Figure 6.22. In the case of high porosity, the fiber surface absorbs more solute, and this 

can help to achieve the target of washing with less amount of water. Moreover, this is 

also a situation when the removal rate of impurities is more from the fiber surface with 

less time in the case when the porosity level is significantly large. This result is also 

supported by Arora et al. (2006). 
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Figure 6.22 Influence of porosity on concentration profile. 

 

6.5.12 Surface Plot Representation 
 

The surface plot performs an important role to simulate the physical behavior of packed 

bed solute concentration at exit level for any location for the time more practically and 

prospectively. The surface plot for the nonlinear model with Pe=1,10,40,300 is 

presented in Figures 6.23-6.26. Figure 6.23 and 6.24 indicates that for small Pe, the 

adsorbed solute on the fiber surface needs more time to detach from the fiber surface 

because small Pe makes more dispersion of solute due to this more back mixing occurs. 

It is also noticed from Figure 6.26 that improper washing is seen for very large Pe. 

Moreover, it is noted that the surface plot for Pe= 40 shows a better washing curve as 

in Figure 6.25. 
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Figure 6.23 Surface plot for non-linear model for Pe=1 

 

 
  

 Figure 6.24 Surface plot for non-linear model for Pe=10 

 



 

117 
 

 
 

Figure 6.25 Surface plot for non-linear model for Pe=40 

 

 
Figure 6.26 Surface plot for the non-linear model for Pe=300 
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6.5.13 Relation with the Industrial Parameters  

The performance of the pulp washing process in the paper industry is examined by the 

amount of black liquor(impurities) removed. High effectiveness of the washing process 

can be attained when a large amount of impurities adsorbed on the surface of fiber are 

removed in a short period. In this work, the industrial parameters connected with the 

concentration of solute which are commonly used such as bed efficiency and 

displacement ratio are mathematically estimated. 

Displacement ratio (DR) 

The displacement ratio is a common performance parameter used in the industry. It 

indicates the actual decrease of effluent liquor relative to the maximum possible 

decrease (Kukreja, 1996) and is defined as: 

0

0

d

s

c c
DR

c c





 

where 0c  is initial solute concentration, sc is the solute concentration in wash liquor, 

and dc  is the average solute concentration. 

The effect of DR for different Pe in the form of a breakthrough curve is shown in Figure 

6.27. It is observed that for the large value of Pe, more quantity of black liquor is 

removed because the dispersion is small in this case. Due to this, less back mixing 

occurs, and the impurities adsorbed on fiber are removed in large quantities in a short 

time interval.  When the value of DR is 1, the 100% solids are assumed to be removed 

from the packed bed, although it is not possible in a real sense. Thus, for the high value 

of Pe, maximum reduction of dissolved solids is possible and better washing can be 

achieved. Arora and Potůček, (2012) and Mittal et al. (2013) have also supported this 

result by solving the model with OCFE and CHCM respectively.   

Bed efficiency (E) 

During the washing operation, the change in the amount of effluent liquor is described 

by bed efficiency. Efficiency is determined on the baseis of the quantity of black liquor 

solids removal (Kukreja et al., 1995) and it is defined as: 

e s

d s

c c
E

c c





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where ec  is exit solute concentration, sc is solute concentration in wash liquor, and 

dc  is average solute concentration. 

The effect on bed efficiency for a range of Pe is shown in Figure 6.28. It is observed 

from the figure that efficiency is increased with high Pe in comparison to small Pe. 

Potůček (1997) described that the bed efficiency is evaluated when the wash liquor ratio 

is equal to unity. In case, when the wash liquor ratio is increased from 0 to 1, the bed 

efficiency is increased indefinitely. This is a situation of pure displacement for the 

existence of perfect plug flow. The concentration of lignin at the outlet for the perfectly 

mixed vessel is the same as the average concentration inside the bed and the efficiency 

is equal to unity in this case. In the ideal situation, bed efficiency lies in the range from 

1 to infinity. Moreover, the output of the washing operation is also affected by other 

factors such as particle orientation, pulping process, porosity (porous nature) of the 

packed bed, type of substance, and time consumed in the washing operation. Mittal et 

al. (2013) also demonstrated the same result by employing CHCM.  

6.5.14 Simulation with Experimental Data  

The applicability of the model is checked in the study using actual industrial data taken 

from a brown stock washer (for pulp washing) at the fourth stage of a paper mill. The 

solution of the mathematical model with respect to washing zone is derived using the 

experimental data given by Grähs (1974), Kukreja (1996), and Arora and Potůček 

(2012). The detailed data of experimental values of the lab-scale drum washer given by 

these authors are presented in Tables 6.12 to 6.14. Although the available experimental 

data varies across the paper mills, the only purpose of applying this method is to prove 

its efficiency in solving the model. 

Paper mill 1 

Subsequently, the experimental data of Grähs (1974) is used to solve the nonlinear 

model with QHCM in the present study. The results so derived were found to be better 

and consumed less CPU time. Further, Arora et al. (2005), Gupta and Kukreja (2012) 

and Mittal et al. (2013) used the experimental study of Grähs (1974) to solve the model 

with OCFE, CSCM, and CHCM respectively. All these authors proved their superiority 

in numerical results with their respective techniques. Besides, in the earlier paragraphs, 

the numerical results using QHCM are also compared with Mittal et al. (2013) and 
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solution profiles are noticed to converge fast in less time as compared with the 

numerical technique used by Mittal et al. (2013). Further, the exit solute concentration 

profile using experimental data from Grähs (1974) is also presented in the form of a 3D 

plot in Figure 6.29. 

Paper mill 2 

In the next phase, the experimental data of Kukreja (1996) is also used as the input 

parameters to study the present model. Kukreja (1996) performed the lab-scale 

experiment on a drum washer that is 30.48 cm wide with a diameter of 23.46 cm. The 

temperature throughout the washing process of pulp (kappa number 20) is 348 K. The 

nonlinear model is solved with the QHCM using this experimental data and found that 

the results derived were better than the earlier studies. The behavior of solute 

concentration using the present method for the nonlinear model in the form of the 

surface plot is presented in Figure 6.30. Arora et al. (2005) also used this data to solve 

the nonlinear model with OCFE and attained the results for some parameters like cake 

L, Pe, and DL. 

Paper mill 3 

Arora and Potuček (2012) experimented with a rotary vacuum washer, which is 

4.8768m long with a diameter of 5.7912m and fractional submergence of the drum is 

40%. The temperature throughout the washing process of pulp (kappa number 15) is 

323 K. The experimental data of raw material as wheat straw given in the study is taken 

as input parameters. Arora et al. (2005) used the OCFE method to solve the nonlinear 

model in their study. Further, Ganaie et al. (2014) also used this data to solve the 

nonlinear model with CHCM and proved the superiority of this method. In the present 

work, the nonlinear model is solved with the QHCM using the data of Arora and 

Potůček (2012) and the validity of the method is proved. Besides, to substantiate the 

results, the behavior of solute concentration at the exit level concerning time and 

distance (cake thickness) is presented as a 3D plot in Figure 6.31.  

It is observed from the three surface plots (Figures 6.29 to 6.31) that the concentration 

of solute at the exit level is decreasing more rapidly with the experimental data of 

Kukreja (1996) and Arora and Potůček (2006) in comparison with Grähs (1974). The 

reason may be the difference in parameters such as porosity, and climatic conditions. 

The dispersion coefficient, interstitial velocity, cake thickness, and difference in initial 
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solute concentration are also responsible for determining the efficiency of the pulp 

washing. The results will be advantageous especially to the paper industry as it indicates 

reducing the environmental load and attaining optimum efficiency.     

 

 

Figure 6.27 Influence of Pe on Displacement ratio 
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Figure 6.28 Influence of Pe on bed efficiency 

 

 
Figure 6.29 3D plot for concentration profile at exit level using experimental data of 

Grähs (1974) 
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Figure 6.30 3D plot for concentration profile at exit level using experimental data of 

Kukreja (1996) 

 
Figure 6.31 3D plot for concentration profile at exit level using experimental data of 

Arora and Potuček (2012) 

 

  



 

124 
 

6.6 VERIFICATION OF NONLINEAR MODEL-2 

The nonlinear model is solved using the QHCM for different values of parameters such 

as Pe, bed porosity, axial dispersion coefficient, and cake thickness by developing 

MATLAB codes. The numerical results obtained for this model are verified using the 

experimental data of Grähs (1974). Mittal and Kukreja (2015) also solved this model 

by using the technique of CHCM. In this study, the model is solved using QHCM by 

considering the range of Pe from 1 to 300 and the results are displayed in Table 6.20. 

The numerical results for Pe=1,10,40 and 300 are also represented by 3D plots from 

Figures 6.32 to 6.35. It is noticed from the table that the concentration profile at the exit 

level is decreasing with an increase in time. Initially, the concentration of solute is 1.0 

and it started decreasing with time. The deviation in the solution profile is observed for 

a value of Pe lower than 20 (say 10 to 19) and deviation is minimum in the solution 

profile with high Pe. Kumar et al. (2009) also supported these results and observed the 

effects of Pe on the concentration of solute at exit level for sodium ions and lignin ions. 

Also, the washing is improved with the increase in Pe. This is because the axial 

dispersion coefficient decreases with an increase in Pe. But when Pe takes very large 

values then the solution profiles do not give good results and washing is not proper. 

Roininen and Alopaeus (2011) also favored that the case more increase in Pe show 

fluctuations that lead to negative concentrations. So, the value of Pe lying in the 

medium range is preferred to achieve better washing. 
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Table 6.20 Solution profile for nonlinear model-2 for various values of Pe 

 

Time Pe  =10 Pe =20 Pe =40 Pe =100 Pe =300 

0.0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 

0.1 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 

0.2 1.000E+0 1.000E+0 1.000E+0 1.000E+0 1.000E+0 

0.3 9.985E-01 1.000E+0 1.000E+0 1.000E+0 1.000E+0 

0.4 9.859E-01 9.995E-01 1.000E+0 1.000E+0 1.000E+0 

0.5 9.493E-01 9.937E-01 9.999E-01 1.000E+0 1.000E+0 

0.6 8.860E-01 9.710E-01 9.974E-01 1.000E+0 1.000E+0 

0.7 8.041E-01 9.214E-01 9.825E-01 9.995E-01 1.000E+0 

0.8 7.142E-01 8.457E-01 9.395E-01 9.933E-01 1.000E+0 

0.9 6.244E-01 7.531E-01 8.614E-01 9.609E-01 9.976E-01 

1.0 5.399E-01 6.541E-01 7.567E-01 8.758E-01 9.659E-01 

1.1 4.630E-01 5.571E-01 6.409E-01 7.427E-01 8.420E-01 

1.2 3.944E-01 4.669E-01 5.268E-01 5.924E-01 6.507E-01 

1.3 3.340E-01 3.858E-01 4.214E-01 4.501E-01 4.666E-01 

1.4 2.815E-01 3.145E-01 3.283E-01 3.253E-01 3.052E-01 

1.5 2.361E-01 2.530E-01 2.484E-01 2.198E-01 1.667E-01 

1.6 1.973E-01 2.009E-01 1.823E-01 1.353E-01 6.465E-02 

1.7 1.642E-01 1.575E-01 1.295E-01 7.422E-02 1.547E-02 

1.8 1.361E-01 1.220E-01 8.906E-02 3.653E-02 6.255E-03 

1.9 1.125E-01 9.336E-02 5.942E-02 1.767E-02 1.990E-03 

2.0 9.277E-02 7.072E-02 3.855E-02 9.484E-03 1.499E-04 
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Figure 6.32 3D plot for concentration profile at exit level for Pe=1 

 
 

Figure 6.33 3D plot for concentration profile at exit level for Pe=10 
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Figure 6.34 3D plot for concentration profile at exit level for Pe=40 

 

 

Figure 6.35 3D plot for concentration profile at exit level for Pe=300 
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6.7 COMPARISON OF NONLINEAR MODEL 1 AND 2 

The numerical results for exit solute concentration using QHCM for both the nonlinear 

models are derived in the above discussion. In this part, the numerical results are 

compared for both models for different values of Pe. The experimental data of Grähs 

(1974) is used to simulate the results. The exit solute concentration is exposed with the 

breakthrough curves for both models in Figure 6.36. The domain in the case of both 

models is divided into 40 elements and the results are derived for Pe=10,40 and100. 

The concentration profiles for Pe = 40 to 110 are rising at the lower side of the curve 

and both the models have good agreement. It is noticed from the figure that both the 

models are giving the same output results when Pe is increased from 40 but for Pe less 

than 40 the exit solute concentration for both the models is not providing the same 

results. Hence, not much considerable difference is observed between the solution 

profiles for the nonlinear models 1 and 2. 

 
 

Figure 6.36 Comparison of concentration profile at exit level for nonlinear model-

1(NLM1) and nonlinear model-2(NLM2) 
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6.8 VERIFICATION OF NONLINEAR MODEL-3 

The nonlinear model is solved using the QHCM for different values of Pe. In this 

model, linear isotherm is used to describe the connection between solute concentration 

in liquor and fiber. The model is solved for the division of domain into different 

elements for Pe=10,40 and 100. It is noticed from Figure 6.37 that when the domain is 

partitioned into 5 elements for Pe=10, the solute comes out in a better way as compared 

to the case for 10 elements. Similarly, the concentration profile at exit level Pe=40 with 

the number of elements 5 provides better results than the division of the domain into 10 

elements. But as soon as, the value of Pe is increased to 100, the washing results are 

better with the number of elements 10. Hence, in all cases, we can derive better results 

with less division of elements, and we need less number of equations than CHCM used 

by Ganaie et al. (2013). This proves that computational cost and time are reduced with 

this method. 

 

 

Figure 6.37 Comparison of exit solute concentration profile by division of domain 

into different elements for Pe=10, 40, 100 
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Figure 6.38 Comparison of exit solute concentration profile for different values of Pe. 

 
Figure 6.39 3D plot for concentration profile at exit level for Pe=1 
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Figure 6.40 3D plot for concentration profile at exit level for Pe=10 

 

 
Figure 6.41 3D plot for concentration profile at exit level for Pe=40 
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Figure 6.42 3D plot for concentration profile at exit level for Pe=300 

 

In Figure 6.38, the solution profiles for exit solute concentration for different range of 

Pe lying from 1 to 300 is shown. The concentration profiles at the exit level are 

overlapping with each other for Pe=20,30 and40. In the case when Pe is increased from 

100, the exit solute concentration is more peaked with more rate of convergence. On 

the other hand, when Pe is small, the exit solute concentration profile is more curved 

with a very slow rate of convergence. It is also noticed that when Pe is large, the 

concentration profile behavior is more or less the same. Also, the concentration profile 

at exit solute is very steep for a very small value of Pe which indicates that the solute 

takes a long period to diffuse out from the pores of the particle. However, when the 

value of Pe lies in the medium range, a long time is required for washing which results 

in the convergence of concentration profiles slow but is considered still as a range of 

acceptability.  

It is also noticed that when the value of Pe increases, the washing time decreases. This 

is a situation in which each differential component of the introduced solvent 

immediately blends with substances of the bed and the same quantity of fluid is 

supplanted from the bed. This makes the bed behave like a complete mixing chamber. 

When the value of Pe is small, the diffusion performs its leading role because the value 

of interstitial velocity is very small. As a result, slow convergence of the concentration 
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profiles at exit solute is seen in Figure 6.38. This kind of state is generally not 

considered ideal in industrial practice. It points toward the fact that DL becomes smaller 

for the high value of Pe. This affects the concentration of solute at the exit level as 

solute diffuses out in large amounts from the pores of the particle. In this situation, the 

equation is reduced into a PDE of order one. The interstitial velocity plays a major role 

in comparison to DL. The concentration profile at the exit level becomes wider and 

washing time drops very speedily as shown in Figure 6.38. This is a state where the 

original contents (black liquor) of the pulp bed are forced out by the displacing fluid in 

a piston-like manner. But this is not a practical state because neither the interstitial 

velocity be infinite, nor the diffusion is zero. In an ideal situation, all the soluble 

impurities can indeed be removed from the pulp bed. Hence, the best possible range of 

Pe is needed in the industries to maintain the equilibrium between the elimination of 

contaminations and the washing time. Al-Jabari et al. (1994) proved that the best stage 

of washing can be attained for Pe=40. The real flow lies within the in-between range 

of the case of perfect mixing (Pe=0) and the case of perfect displacement (Pe= ∞) when 

the cake thickness and interstitial velocity are constant. For high values of Pe, the mass 

transfer zone is noticed as steeper. Also, the figure shows that in the case of small Pe, 

the solute takes more time to diffuse out from the pores of the particle. The numerical 

results for Pe=1,10,40 and 300 are also represented by 3D plots from Figures 6.39 to 

6.42. Ganaie et al. (2014) explained, and the process of solute removal is simulated 

more perfectly with the nonlinear isotherm as compared to the linear one. Ganaie et al. 

(2014) considered the nonlinear model with boundary conditions same as Singh et al. 

(2008) and Mittal et al. (2013). 

6.9 VERIFICATION OF THE TWO-DIMENSIONAL MODEL  

The model is solved using the technique of QHCM and the numerical results for the 

solution profile are presented for distinct values of parameters. The validity is checked 

by applying the present technique to the above model equations for experimental data 

of Arora and Potůček (2012). The comparisons with previously published results in the 

radial and axial domain are also offered in this work. 
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6.9.1 Comparison Between Experimental and Numerical Values 

The numerical values for solution profiles using the present technique are determined 

and compared with experimental values given in detail by Arora and Potůček (2012). 

The numerical results derived using the present method for Pe=20.81, Biot number 

(Bi)=10, and bed porosity(e)=0.6711 are compared with the previously published 

results of Arora and Potůček (2012) using OCFE and of Gupta et al. (2015) using 

CSCM. The comparisons are also made in terms of absolute and relative errors. 

Notably, the relative error in Table 6.21 is found to be very less using QHCM in 

comparison to OCFE and CSCM. It indicates the validity of the given model. This 

substantiates that QHCM is superior to these techniques. Besides this, the results 

obtained using the present method for Pe = 4.91, ε = 0.61, and Bi = 4.5 are compared 

in the form of absolute error with the numerical results derived with OCFE by Arora et 

al. (2020) and presented in Figure 6.43. The figure displays that the results using 

QHCM are with less absolute error than the technique OCFE. 
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Table 6.21. Comparison between experimental and numerical values with published results 

Experimental results  

Arora and Potůček 

(2012)  

Numerical results 

(OCFE) Arora et 

al. (2020) 

Relative error 

with OCFE 

 

Numerical results 

(CSCM) 

Gupta et al. (2015) 

Relative error 

with CSCM 

 

Present 

method  

QHCM 

Relative error 

with QHCM 

1.0000E+00 1.0000E+00 0.0000E+00 - - 1.0000E+00 0.0000E+00 

9.9000E-01 9.9972E-01 9.8182E-03 9.9070E-01 7.0707E-04 9.9010E-01 1.0101E-04 

9.3850E-01 9.3953E-01 1.0975E-03 9.3790E-01 6.3932E-04 9.3800E-01 5.3277E-04 

8.1690E-01 8.1652E-01 4.6517E-04 8.1580E-01 1.3466E-03 8.1710E-01 2.4483E-04 

6.7430E-01 6.7366E-01 9.4913E-04 6.7360E-01 1.0381E-03 6.7500E-01 1.0381E-03 

5.3350E-01 5.3573E-01 4.1799E-03 5.3430E-01 1.4995E-03 5.3380E-01 5.6232E-04 

4.5600E-01 4.5244E-01 7.8070E-03 4.5710E-01 2.4123E-03 4.5530E-01 1.5351E-03 

3.5560E-01 3.5773E-01 5.9899E-03 3.5460E-01 2.8121E-03 3.5610E-01 1.4061E-03 

2.6850E-01 2.6648E-01 7.5233E-03 2.6740E-01 4.0968E-03 2.6910E-01 2.2346E-03 

1.8490E-01 1.8592E-01 5.5165E-03 1.8910E-01 2.2715E-02 1.8530E-01 2.1633E-03 

1.0950E-01 1.0866E-01 7.6712E-03 1.0560E-01 3.5616E-02 1.0900E-01 4.5662E-03 

4.2940E-02 4.2893E-02 1.0946E-03 - - 4.2980E-02 9.3153E-04 

5.4230E-03 5.4413E-03 3.3745E-03 - - 5.4300E-03 1.2908E-03 

1.8750E-03 1.8612E-03 7.3600E-03 - - 1.8680E-03 3.7333E-03 

9.5800E-04 9.6388E-04 6.1378E-03 - - 9.6400E-04 6.2630E-03 

5.8500E-04 5.8501E-04 1.7094E-05 - - 5.8400E-04 1.7094E-03 

5.0700E-04 5.0883E-04 3.6095E-03 - - 5.0600E-04 1.9724E-03 
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Figure 6.43 Comparison of OCFE and QHCM in terms of absolute error 

6.9.2 Effect of Some Important Parameters 

Practically, it is not possible that the washing process depends on a single parameter. It depends 

on various parameters such as a change in bed porosity, pore radius, permeability, DL, u, Bi, and 

Pe. The effect of some of the essential parameters using values of experimental data of Arora and 

Potůček (2012) is shown graphically in this part. 

Influence of Pe 

The Pe is inversely proportional to dispersion, and it is lower when the dispersion is higher. Gupta 

et al. (2015) also proved that the dispersion coefficient has a significant effect on concentration 

profiles. When the value of Pe is increased, the dispersion coefficient decreases, and it causes a 

reduction in back mixing. Due to this, the adsorbed impurities of particle surface are leached in a 

better manner and improved washing is attained. The results in Figure 6.44 are demonstrated for 

the range of Pe from 2 to 20, Bi=10 and bed porosity as 0.6711. It is observed that the concentration 

decreases with an increase in time. The figure also declares that the tail of concentration profiles 
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gets longer for a small value of Pe as compared to a large value of Pe which causes an increase in 

back-mixing and time for washing. 

Influence of the distribution ratio  

The distribution ratio (
2

fD R ) plays a vital role in concentration profiles and the effect is 

represented in Figure 6.45. The influence of distribution ratio on solution profiles at exit level is 

shown for parameter Pe= 20.81, Bi = 10 and ε = 0.67. An increase in the value of   accompanied 

by the decrease in the value of  Df  , causes the solution profiles to converge to zero more rapidly. 

It is shown in the figure that with the increase in the value of distribution ratio,   decreases which 

results in the increase in the retention time. Due to this fact concentration profiles are elongated 

and take large time to converge to the steady state condition. A small distribution ratio causes more 

bulging in pores and more diffusion is caused due to particle pores which results in improved 

washing. 

Influence of Biot number (Bi) 

Besides the Pe, there also exist other parameters that affect the whole process. The solution profile 

using QHCM is obtained for experimental conditions of washing runs by Arora and Potůček 

(2012) given in Table 6.22. The numerical results are presented as breakthrough curves in Figure 

6.46.  It is seen from this figure that the concentration of solute presented as solution profiles for 

washing run IV and Pe = 12.96 needs more time for converging to a steady-state condition in 

comparison with other experimental values for Pe = 12.25,16.92 and Pe = 20.8. The figure shows 

that the behavior of solution profiles for washing runs 1 and II are nearly similar but the Pe = 12.25 

and Pe = 20.81 are not the same.  

The reason is Bi which is also a significant parameter used to represent the mass transfer resistances 

on and inside the particle surface in the washing process. For washing run II the Bi is more than 

the run1 and this causes an increase in the deletion rate of adsorbed impurities on the surface of 

the particle. Also, it is noticed that large values of Bi cause an increase in mass transfer rate and 

indicate the fast convergence of solution profiles as compared to small Bi. 
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Figure 6.44 Influence of Pe on the concentration of solute at exit level 

 

 

Figure 6.45 Influence of distribution ratio (
2

fD R ) on the concentration of solute at exit level 
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Figure 6.46 Effect of different washing run of Table 6.22 on solution profiles 

 

Table 6.22 Experimental data for different washing runs by Arora and Potůček (2012) 

 

Washing 

runs 

Peclet 

number (Pe) 

Biot number             

(Bi) 

Fibre 

consistency 

(CF) 

Bed 

porosity  

(e) 

Run I 12.25 7.4 12.09 0.6898 

Run II 20.81 10 11.91 0.6711 

Run III 16.92 7.5 13.14 0.5561 

Run IV 12.96 6.3 7.96 0.8120 

Influence of bed porosity(e) 

Although from Figure 6.46, the Pe and Bi are nearly the same in washing runs I and IV but 

concentration profiles at exit level are not the same. This happens due to bed porosity which is 

lesser in the former case in comparison to the latter ones. The solution profile needs extra time to 

converge for the steady-state condition. Bed porosity (e) indicates the proportion of volume present 

for flow wash liquid to the total capacity. Also, the greater bed porosity shows the availability of 
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more volume for displacement, and hence the absorbed impurities on the particle surface are 

leached away in a better manner. 

Influence of mass transfer coefficient (k) 

The effect of mass transfer coefficient (k) on the breakthrough curves is shown in Figure 6.47. For 

higher values of k, the detachment rate becomes small and accordingly more time is consumed by 

the solution profiles to converge to steady state condition. It is observed from figure that effective 

washing is achieved for smaller values of mass transfer coefficient. 

 
Figure 6.47 Effect of mass transfer rate (k) on solution profiles 

6.10 SUMMARY  

In this chapter, the linear models discussed earlier are solved with QHCM and numerical results 

are compared with the analytic solution as well as with previous numerical techniques using error 

analysis. Besides this, the stability and convergence of the method are also examined. Thereafter, 

the nonlinear models are solved, and numerical results obtained are found to be better than earlier 

techniques. The numerical results are also simulated with industrial data of different paper mills 

available in the literature. At last, the two-dimensional model is solved with this technique, and 

important parameters affecting the process are also explained. 
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