AGRO-CLIMATIC, ECONOMIC AND GOOD AGRICULTURAL PRACTICES ADOPTION FEASIBILITY STUDIES ON SELECTED MEDICINAL PLANTS OF PUNJAB

Α

THESIS SUBMITTED TO

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY

BATHINDA (PUNJAB)

IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR IN PHILOSOPHY

IN

PHARMACY

By

PREET AMOL SINGH Registration No. 17201MFT05

Department of Pharmaceutical Sciences & Technology MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA (PUNJAB)

2021

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis, entitled "Agroclimatic, Economic and Good Agricultural Practices Adoption Feasibility Studies on Selected Medicinal Plants of Punjab" in fulfillment of the requirements of the award of the degree of Doctor of Philosophy in Faculty of Pharmaceutical Sciences and submitted in Maharaja Ranjit Singh Punjab Technical University, Bathinda is an authentic record of my own work carried out during a period from Aug., 2017 to Dec., 2021 under the supervision of Dr. Ashish Baldi, Professor, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh, Punjab Technical University, Bathinda, Punjab, India.

The matter embodied in this thesis has not been submitted by me for the award of any other degree of this or any other University/Institute.

Mr. Preet Amol Singh

Regd. No.- 17201MFT05

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

(Dr. Ashish Baldi)
(Supervisor)
Professor
Department of Pharmaceutical Sciences & Technology,
Dean, Research and Development
Maharaja Ranjit Singh, Punjab Technical University,
Bathinda, Punjab, India.

The Ph.D. Viva-Voice examination of Mr. Preet Amol Singh, Research Scholar, has been held on ______.

Signature of Supervisor

Signature of External Examiner

डॉ. जे. एल. एन. शास्त्री मुख्य कार्यकारी अधिकारी Dr. J. L. N. Sastry Chief Executive Officer

भारत सरकार Government of india आयुष मंत्रालय Ministry of AYUSH राष्ट्रीय औषधीय पादप बोर्ड National Medicinal Plants Board

FOREWORD

Nature has bestowed medicinal plants as a wonderful gift to the human race for curing and preventing a large number of ailments. They are not only used as medicine but in cosmetics, food supplements, hygiene for improving the quality of life. Increased awareness among the population regarding their significant role in maintaining an individual's quality of life, has led to a surge in the demand for medicinal plants. The majority of the medicinal plants are collected from the wild and very few are practiced for cultivation. This worldwide supply of medicinal plants through the wild collection is resulting in shrinking of natural resources, unsustainable collection, and decreased biodiversity leading to species entering the red data book. Therefore, the conservation of medicinal plants both in-situ and ex-situ becomes essential.

The cultivation of medicinal plants with compliance with Good Agricultural Practices ensures rich quality raw drugs. In this context, I am pleased to note the study titled "Agroclimatic, economic and good agricultural practices adoption feasibility studies on selected medicinal plants of Punjab" carried out by the authors through the financial support of Forum on Indian Traditional Medicine (FITM), a platform created by the Ministry of AYUSH at Research and Information System for Developing Countries (RIS), New-Delhi.

This study brings out critical points and addresses objectives that are required in the adoption of medicinal plants in Punjab. The study encompasses the identification of medicinal plant cultivators and subsequently geo-tag their locations and digitalize their demographic data using Geographic Information System (GIS). The study highlights potential growing zones for 13 medicinal plants using climatic as well as land pattern data. Besides this the authors have conducted a survey relating to constraints faced by the farmers of Punjab in medicinal plant cultivation, generating good agricultural practices monographs for medicinal plants viz: Curcuma longa L., Aloe vera (L.) Burm.f., Ocimum sanctum L., Emblica officinalis Gaertn., Rauvolfia serpentina (L.) Benth. ex Kurz considering farmer's practices and reported literature. The study emphasizes on identification and mapping of critical agricultural variables involved in the cultivation of medicinal plants to avoid risks at later stages of production. The agro-economics of selected medicinal plants carried out in the present study is essential for the farmers of Punjab interested in medicinal plant cultivation. This study is very helpful in strengthening the medicinal plant's sector particularly in Punjab which has a huge potential of adopting the cultivation of medicinal plants as a better farming option. I once again compliment and the authors as well as FITM for this important study.

With Best Regards

J.L. D. SOOS (DR SASTRY J L N)

if the wisdom is herbal, many ailments are curable দ্রখদ নেল, আর্ছ,আर.सी.एस. अनेक्सी विल्डिंग 1st Floor, IRCS Annxe buiding 1, ইঙ কাঁমে হাঁড়, লাই বিল্লো–110001 1, Red Cross Road, New Delhi-110001 1, Red Cross Road, New Delhi-110001 1, Red Cross Road, New Delhi-110001 (মোম: 11-2372182, Fax: 23721822, Fax: 23721822 ई-লা: ceo-nmpb@nic.in, E-mail: ceo-nmpb@nic.in

INTRODUCTION

According to the World Health Organization (WHO) estimate, the global herbal industry is projected to be worth US\$ 5 trillion by the year 2050 globally. Punjab is an Indian state which falls under trans-gagentic agro-climatic zone of India. Despite favourable climatic conditions and trade opportunities, Punjab has less than 1% of its total cultivable land under medicinal plants cultivation which is far less than its potential. Non-existence of agro-climatic zoning, standard agro-practices, unawareness about Good Agricultural Practices (GAP), marketing and no quality mapping with industrial standards have made the adoption of medicinal plants complex.

METHODS

The selection of medicinal plants was done on the basis of commercial value, feedback received from local farmers, Government officials along with experts from industry and academia. Agro-climatic study was conducted after collecting the annual temperature and rainfall records from the Indian Meteorological Department (IMD) and Punjab Agricultural University (PAU) and agro-eco-subregion based benchmark soils network was utilized for the preparation of digital base maps. All the base maps were superimposed to highlight optimally suitable zone, suitable zone, and lesser suitable zone using Arc. GIS 10.3. Different government, private channels were explored to identify farmers involved in medicinal plants cultivation for geo-tagging and conduct of survey. The base maps were digitalized online and digital information layers were created. The exact location of farmers was marked on the digitalized maps using their latitude and longitude coordinates using GIS. The farmers were interviewed personally using a questionnaire following the purposive sampling technique. Different constraints related to technical, marketing, social participation, awareness and farmer attitude and policy were studied based on Mean Percentage Score (MPS) and Chi-square test was applied to highlight the significant relationship between the farmer's land holdings (small and large farmers) and various constraints. To supplement quality-rich medicinal plants, drafting of comprehensive Good Agricultural and Collection Practices (GACP) guideline was conducted after critically assessing and comparing the GAP of WHO and other countries like America, Japan,

China, The United Kingdom (UK), and India for selected plants. Critical variable alignment study was conducted to understand significant variables and map Critical Materials Attributes (CMA), Critical Process Parameters (CPP) with Critical Quality Attributes (CQA) for e.g. content of active constituent, crop yield, heavy metal content, pesticide residue, physico-chemical ranges, microbial load and suggest improvements. Standardization of farmer's produce for same quality parameters and gap/variability analysis in comparison to industrial standards was conducted using the Failure Mode and Effect Analysis (FMEA) to get rich-quality herbs and avoid risks that are involved in widespread testing of medicinal plants which is mostly costly. Subsequently, monographs featuring GAP related documentation for on-field cultivation were prepared after conducting field visits, farmer interaction and corroborating the inputs with reported literature. The cost-return analysis for selected medicinal plants was performed following descriptive statistics such as average prices of the crops to calculate total variable costs, yield, gross returns, and return over variable costs. The comparative agro-economics analysis was conducted between traditional crops (wheat and rice) and selected medicinal plants. The GAP based farming manuals have been prepared in English and vernacular language (Punjabi).

RESULTS OBTAINED

Based on industrial demand, pharmacological importance, feasibility of cultivation, and expert consultation, thirteen medicinal plants such as Aloe vera (A. vera), Phyllanthus emblica (*P*. emblica), Withania somnifera (*W*. somnifera), *Glycyrrhiza* glabra (*G*. glabra), Asparagus racemosus (A. racemosus), Andrographis paniculata (A. paniculata), Ocimum sanctum *(O.* sanctum), Curcuma longa (C. longa), Centella asiatica (C. asiatica), Acorus calamus (A. calamus), Rauvolfia serpentina (R. serpentina), Ocimum basilicum (O. basilicum), Chlorophytum borivilianum (C. borivilianum) were selected for the agro-climatic zoning studies. Among these thirteen plants, five medicinal plants i.e. A. vera, O. sanctum, C. longa, P. emblica, R. serpentina were identified that were presently cultivated by the farmers of Punjab which were included in the survey studies. Among these five medicinal plants, A. vera, O. sanctum, C. longa were selected for preparing detailed GAP monographs considering their short crop cycle in terms of first harvest than *P. emblica*, and *R. serpentina*.

The agro-climatic zoning model highlighted that zone-I was optimally suitable for most of the selected medicinal plants, followed by zone-II, III, IV, and V. Geotagging enabled assessing of farmers on different agro-climatic zones of Punjab and representing their demographics. It was found that 05 medicinal plants such as C. longa, A. vera, O. sanctum, P. emblica, and R. serpentina were cultivated by 68 farmers across Punjab. It was found that 95.72% of the farmers were not involved in signing contract farming, 78.4% had no processing units, 58.4% lacked knowledge of potential agro-climatic zone to cultivate medicinal plants, 74.47% lacked awareness regarding GAP. The comprehensive drafted GAP guidelines resulted in 12 GAP parameters with 108 sub-parameters. The variable alignment study highlighted seed, site, soil, and water had the highest bearing on the crop yield. Furthermore, in precultivation phase, seed treatment, site treatment, soil treatment, and water treatment had very high impact on crop yield and very less impact on physicochemical ranges. In agro-practices phase, sowing had high impact on crop yield, and very less effect on toxicity indicators. Subsequently, in post-harvest phase, collection has moderate effect on active constituents, drying has moderate effect on microbial load, and storage has moderate effect on active constituents. FMEA successfully enabled standardization of farmers produce in context to crop yield, toxicity indicators, microbial load, active constituents, and physicochemical ranges. Highest severity was given to toxicity indicators followed by microbial load, active constituents, crop yield, and physicochemical ranges. Each agricultural process (authentication, site selection, soil, water, cultivation, crop fertilization, harvest, drying, storage, etc.) and its effect on the critical standardization criteria was evaluated and checklists were suggested to lower the Risk Priority Number (RPN) in order to get good standardized herbal produce. The monograph represented three sections viz. botanical and pharmacological characteristics of plants, good agricultural practices, and Standard Quality Certifications (SQC's) tests that were mentioned in Ayurvedic Pharmacopoeia of India (API), Indian Council of Medical Research (ICMR), WHO, and Food Safety and Standards Authority of India (FSSAI). Based on our agro-economics study, A. vera has INR. 92,876/- profitability per annum/acre, O. sanctum has INR. 35,515/-, and C. longa has a profitability of INR.73,725 per annum/acre. The pictorial farming manuals were prepared in local language (Punjabi) for wider dissemination among the farmers.

DISCUSSION

A comprehensive roadmap was required to identify potential growing zones and medicinal plants cultivators in the state, digitalize their information in order to map the farmers on the agro-ecological specific map using GIS. In developing countries like India there is scanty information related to medicinal plants cultivators so digitalization of farmers information would also help to link clients, farmers, industries, and concerned officials to plan strategies for improved access, trade, and outreach in the future studies.

It also highlighted *O. sanctum*, *W. somnifera* as alternate crops for paddy during *kharif* season. Different technical, trade, social, awareness, and policy related constraints highlighted in the study would help the policymakers to devise appropriate solutions to promote medicinal plants cultivation in the state. In agro-economics study, the selected medicinal plants had more annual profitability than wheat and paddy, hence these crops can be adopted by the farmers after following GAP, and market assessment.

Maintaining consistency is one of the major hurdles in agriculture due to several interfering biological and other factors, hence variability alignment study technique would enable farmer to fine-tune parameters by evaluating possible interactions with in-depth understanding. Conventionally, reliability of medicinal plants has been accomplished using widespread testing of medicinal plants adopting probabilistic reliability modeling. These methods were applied at the delayed phase of improvements. Therefore, FMEA would help to standardize the farmers produce in order to avoid quality related issues in the later stages. Experience of a farmer plays a vital role in the success of the crop. The WHO has recommended drafting of region specific GAP monographs of medicinal plants. In accordance to it, monographs were prepared considering the farmers practices, ecological conditions of the state and corroborate the inputs with supportive literature. These monographs can be adopted by the farmers interested in cultivation of medicinal plants at commercial scale.

CONCLUSIONS

The study was designed to promote the medicinal plants cultivation in the state keeping in view the economic sustenance of farmer based on integrative knowledge of optimum zone and condition, financial feasibility analysis, suitable agro-practices, collection methodologies, quality evaluation and related documentation. The study successfully identified medicinal plants cultivators in the state, digitally mapped farmers and also embedded their demographic profile using GIS. Agro-ecological zoning successfully highlighted potential growing zones for medicinal plants across Punjab. It also highlighted various constraints faced by the farmers. Subsequently, comprehensive GAP guidelines were drafted, the study also identified critical materials and processes effecting quality of medicinal plants. FMEA approach was successfully applied for standardization of farmers produce in order to prevent late stage risks in plant production. The monographs of GAP of selected medicinal plants based on the farmers practices and literature support were drafted and the agro-economics study suggested that *C. longa, A. vera*, and *O. sanctum* has more profitability per annum than the traditional crops.

As no policy exists to regulate right medicinal plant in right area, the rationale and findings of the present study can be used in other parts of the country to ascertain potential growing zones for other medicinal plants based on the region's ecological conditions. The geo-spatial approach used in the present study can provide a luminous light to link consumers and industries directly with the farmers throughout the country. Subsequently, successful farmer's practices in corroboration with the literature can be reported in the form of monographs and disseminated throughout the region using vernacular languages in different parts of the country. This study can be a baseline study for integration of scientific methodologies, successful agro-practices, and documentation as per international norms leading to inputs for future policies for farmer's benefit.

DEDICATED

То

The Farmers and Peasants

ACKNOWLEDGEMENTS

Iamque opus exegi, quod nec jovis ira, nec ignis, nec poterit ferrum, nec edax abolere vetustas;

(I have now completed a work that neither the wrath of Jupiter, nor fire, nor sword, nor the devouring of time can destroy)

Soon after I chose to study Pharmacy, I took a conscious decision of doing a Ph.D. Every research scholar may second to these lines that entering a Ph.D. may not be very difficult but completing a Ph.D. takes a toll on social, physical, and mental aspects of a researcher's life. When I was in school days and got fewer marks, my dad use to say that everything one's get in inheritance can be shared by relatives or others but it is only your education that no one can take away from you. For me, achieving a Ph.D. degree was a dream that is coming true today. Completing Ph.D. was my *Opus exegi*. As I believe that every passing-out Ph.D. scholar carves his way and has his own struggle story to inspire, my Ph.D. journey was not at all exceptional from those hardworking, brave and diligent Ph.D. scholars.

The efforts bore fruits with the successful completion of my Ph.D. However, many people share the reward of this effort simply because it would never have been this good without their help. I relate my Ph.D. work with a plant that has been sown, nurtured, watered, shaped, by many professionals to whom I shall remain indebted throughout my life. First and foremost, I would extend my sincere thanks to my guide Prof. (Dr.) Ashish Baldi, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda. The relationship between the student and his supervisor is always priceless as there is a need to combine two wills, each with their circumstances, to achieve best during the Ph.D. I am grateful to my guide for seeding the idea of my research topic and providing all necessary means for growth. As I took the shovel to nurture the seed with soil, and water it, it was my guide who monitored the entire process diligently, provided solutions to the problems such as plague, drought, and hail so that the tree can grow righteously bearing the best fruits. I also remember the good times when we as a team used to struggle, bear the pressure of writing, re-writing, drafting the research ideas to get research projects from various funding agencies. The sleepless nights writing proposals at the department, the patties and samosas that many of the times replaced our lunch and dinner, we managed to get 05 projects in a year -as rightly said "hard work always pays". Prof. Baldi possesses deep knowledge that helped me to learn and implement a wide spectrum of professional skills.

Behind every successful man is a woman. And if the man is married, then the woman is definitely his wife. I owe a great sense of respect, love to the strength of my lifemy wife Neha Bajwa. Apart from managing her own Ph.D. work, taking care of our home, cooking, she stood by me and worked together as a team. Whether it was daily routines or achieving long-term goals, she helped me in every dimension. Things for me changed when our daughter Nehreet was born on 5-September-2020. She is an apple of my eye and all the pressure and tensions vanished on seeing her. Through this acknowledgement, I wish her success, prosperity and best in her life. My parents deserves endless gratitude: my dad Dr. Charanjit Singh Nabha for his constant support in every aspect of my life, wise counseling, and specifically teaching me that positive attitude and patience leads to success. To my family, I give everything, including this.

Dr. J.L.N. Sastry (CEO, NMPB) is a walking encyclopedia in the field of medicinal plants. It is a great honor for me that he took time from his busy schedule to acknowledge my research work in the form of a foreword page. I once again thank and extend my sincere gratitude to Dr. Sastry sir.

I place on record my special thanks to Prof. T.C. James, Member Secretary (FITM) at Research and Information System for Developing Countries (RIS), New-Delhi for his constant support and encouragement throughout my research work.

I would like to convey my sincere gratitude and thanks to Dr. Arun Chandan (Regional Director, RCFC-North-1, NMPB) for being a guiding source throughout my study. He had a stellar role in linking me with medicinal plants cultivators, herbal industries, farmer-producer companies throughout Punjab. His technical inputs have helped me to manage this project in the best possible way.

I am indeed grateful to Prof. Bhavesh Kevadia (Head), Virus Theranostics Laboratory at University of Nebraska, USA for his constant guidance to publish articles in highly impactful journals.

I am grateful to my funding agency FITM, RIS, and Ministry of AYUSH for providing me with doctoral research for the present work. I am grateful to Dr. Namrata Pathak (FITM), Mr. Apurva (FITM), Dr. Ritu Priya Mehrotra (JNU, New-Delhi), Prof. (Dr.) Tanuja Manoj Nesari, (Director, AIIA, New-Delhi), Dr. Manoj Nesari (Ministry of AYUSH), Dr. G.P. Kimothi (NMPB), Dr. Kavita Tyagi (NMPB), Dr. NB Brindavanam (Consultant NMPB), Mr. Jitender Sharma, IFS (Former Principal Chief Conservator of Forests, Department of Forests & Wildlife Preservation, Punjab), Vishal Chauhan, IFS, Mr. Yugraj Singh (DFO), Mr. Daljit Singh (DFO), Department of Forests & Wildlife Preservation, Punjab, Prof. (Dr.) Manmohan Singh (Regional research station, PAU, Ballowal Sonkri, Punjab), Dr. Anil Sood (Scientist SG & Head, Agro-ecosystem and Crop Modelling Division Punjab Remote Sensing Centre PAU, Ludhiana), Prof. (Dr.) Sukhpal Singh (Principal Economist, Department of Economics and Sociology, Punjab Agricultural University), Mr. Sumit Bhardwaj (Research Assistant, Department of Economics and Sociology, Punjab Agricultural University), Dr. Aman Kumar, Principal Scientist, Bio-resource Development Department, DRDC (Dabur Research and Development Centre, Ghaziabad), Mr. Jyoti Saroop (Manager, Unati Co-operative Marketing-Cum-Processing Society Ltd., Talwara, Punjab), Mr. Pardeep Garg (Managing Director, Herbal Trends, Gidderbaha, Punjab), Mr. Satyan Dilawari (Director, Herbal Health Research, Amritsar, Punjab), Mr. Lakhwinder Sharma (Department of Statistics, Punjabi University, Patiala), Dr. Sunita Garg (Scientist at NISCAIR, New-Delhi) for supporting the project through their much-needed inputs. I am especially Mr. Naresh and his team and (Late) Mr. Bikramjeet Singh who guided me with their farming experience.

I am thankful to the visionary leadership of Prof. (Dr.) Buta Singh Sidhu (Vice Chancellor, Maharaja Ranjit Singh Punjab Technical University, Bathinda). I also extend my thanks to Dr. Rahul Deshmukh (HoD), Dr. Uttam Mandal, and Dr. Amit Bhatia (Department of Pharmaceutical Sciences and Technology, MRSPTU) for their constant support during my Ph.D.

I record a cordial acknowledgement for all my teachers from school to university. I place my special thanks to my friends and batch mates for being my stress busters through their wonderful company. Last but not the least; I am thankful to the farmers and peasants of Punjab for guiding me throughout the work.

(Preet Amol Singh)

TABLE OF CONTENTS

Conte	ents		Pg. No.
Title I	Page		i
Candi	dates Decl	aration	ii
Forew	ord by Dr	. J.L.N. Sastry (CEO, NMPB), Ministry of AYUSH	iii
Abstra	act		iv-viii
Dedic	ation		ix
Ackno	owledgem	ents	x-xii
Table	of Conten	ts	xiii-xix
List of	f Figures		xx-xxiii
List of	f Tables		xxiv-xxviii
List of	f Plant and	l Microbe Species	xxix-xxxi
List of	f Publicati	ons During Ph.D.	xxxii-xxxv
List of	f Abbrevia	ations	xxxvi-xIi
CHAI	PTER-1:	INTRODUCTION	1-11
CHAI	PTER-2:]	REVIEW OF LITERATURE	12-56
2.1.	Indian S	ystems of Medicine	12
2.2.	Demand	for Medicinal Plants	13-14
2.3.	Agricult	ure in Punjab	14-15
2.4.	Good Ag	gricultural Practices	15-20
2.5.	Quality I	Parameters of Medicinal Plants	20-26
	2.5.1.	Phytoremediation Techniques	24-26
2.6.	Selected	Medicinal Plants	26-43
	2.6.1.	Aloe vera	26-28
	2.6.2.	Phyllantus emblica	28-29
	2.6.3.	Withania somnifera	29-31
	2.6.4.	Glycyrrhiza glabra	31-32
	2.6.5.	Asparagus racemosus	32-33
	2.6.6.	Andrographis paniculata	33-34
	2.6.7.	Ocimum sanctum	34-36
	2.6.8.	Curcuma longa	36-37
	2.6.9.	Centella asiatica	37-38
	2.6.10.	Acorus calamus	38-39

	2.6.11.	Rauvolfia serpentina	40-41
	2.6.12.	Ocimum basilicum	41-42
	2.6.13.	Chlorophytum borivilianum	42-43
2.7.	Agro-cli	matic Zoning	43-47
2.8.	Critical A	Agricultural Attributes of Medicinal plants	47-51
	2.8.1	Pre-cultivation Phase	48-49
	2.8.2	Cultivation Phase	49
	2.8.3	Harvest and Post-harvest Phase	50-51
2.9.	Failure N	Iode Effect Analysis	51
2.10.	Case Stu	dies of Medicinal Plants Cultivation	52-54
2.11.	Agro-eco	onomics	54-56
СНА	PTER-3:	RESEARCH ENVISAGED AND PLAN OF	57-68
WOI	RK		
3.1.	Problem F	Formulation	57-58
	3.1.1.	Research Formulation	57-58
3.2.	Aim and C	Dbjective	58-59
	3.2.1.	Aim	58
	3.2.2.	Objectives	58-59
3.3.	Plan of W	ork	60-63
3.4.	Research	Methodologies	63-67
3.5.	The Expec	cted Outcomes	67-68
СНА	PTER-4: I	MATERIALS AND METHODS	69-81
4.1.	Selection	of Medicinal Plants	69
4.2.	Agro-cli	matic Feasibility Analysis Including Agro-Climatic	69-70
	Mapping	and Zoning to Find Best Suitable Zone of the	
	Selected	Medicinal Plant	
	4.2.1.	Collection of Meteorological Data	69
	4.2.2.	Preparation of Base Maps	69
	4.2.3.	Agro-climatic Zoning Model	70
4.3.	Identifica	ation of Medicinal Plants Cultivators Exploring	70-71
	Different	Channels in Punjab	
	4.3.1.	Collection of Medicinal Plants Cultivators Data	70-71
		from Various Public and Private Channels	

4.4.	Geo-Tagging of Medicinal Plants Cultivators Using GIS	71
4.5.	Survey for Identification of Constraints in Medicinal Plant	72-74
	Cultivation by Farmers of Punjab	
	4.5.1. Study Area	72
	4.5.2. Sample Size	72
	4.5.3. Inclusion and Exclusion Criteria	72
	4.5.4. Mode of Survey	73
	4.5.5. Data and Sampling Technique	73
	4.5.6. Design and Validation of Questionnaire	73
	4.5.7. Statistical Tools	73-74
4.6.	Drafting of Comprehensive GACP Guidelines After Critically	75
	Assessing and Comparing GACP of WHO and Other	
	Countries Like America, Japan, China, European Union,	
	NMPB India for Selected Plants	
4.7.	Critical Variable Alignment Study to Understand Significant	75-76
	Variables Affecting the Critical Quality Attribute in Question	
	Based on Scientific Rationale and Suggestive Improvements	
	in Agro-Practices for Quality Compliance with Specific	
	Reference to Content of Active Constituent(S), Heavy Metal	
	Residue and Pesticide Contamination	
	4.7.1. Design of the Study Based on Critical Variables	75-76
4.8.	Standardization of Farmer's Produce for Same Quality	76-79
	Parameters and GAP/Variability Analysis In Comparison to	
	Industrial Standards	
	4.8.1. Descriptions of FMEA Model	77
	4.8.2. Criteria for Severity, Occurrence and Detection	77-79
	Ranking for Agricultural Processes	
	4.8.3. Assigning RPN	79
4.9.	Drafting of Monograph of Selected Medicinal Plants	80
	Featuring GAP Related Documentation for On-Field	
	Cultivation	
4.10.	Economic Feasibility Studies of Selected Medicinal Plants	80-81
4.11.	To Develop Farming Manual for Selected Plants in Local	81

Language for Wider Benefits

	Dunguu		
4.12.	To Sub	omit the Proposed Comprehensive GAP for Selected	81
	Medici	nal Plants to Regulatory Agencies	
CHA	PTER-5	: RESULTS AND DISCUSSION	82-236
5.1.	Selection	on of Medicinal Plants	82-83
5.2.	Agro-c	limatic Feasibility Analysis Including Agro-climatic	83-101
	Mappir	ng and Zoning to Find Best Suitable Zone of the	
	Selecte	d Medicinal Plants	
	5.2.1.	Collection of Meteorological Data	83-85
	5.2.2.	Base maps	85-87
	5.2.3.	Ecological Requirements of Selected Medicinal	87-88
		Plants	
	5.2.4.	Agro-climatic Zoning Model	88-101
5.3.	Identifi	cation of Medicinal Plants Cultivators	102-103
	5.3.1.	Collection of Medicinal Plant Cultivators Data from	102-103
		Various Channels	
5.4.	Geo-Ta	agging of Medicinal Plants Cultivators Using GIS	103-106
	5.4.1.	Spatial Distribution of Farmers on Agro-ecological	103-105
		Zones of Punjab	
	5.4.2.	Embedding of Farmers Demographics in Maps	105-106
5.5.	Survey	for Identification of Constraints in Medicinal Plant	106-118
	Cultiva	tion by Farmers of Punjab	
	5.5.1.	Descriptive Analysis of Data	106-107
	5.5.2.	Technical Constraints	107-109
	5.5.3.	Trade Related Constraints	109-111
	5.5.4.	Social Participation and Awareness Related	111-112
		Constraints	
	5.5.5.	Attitude and Policy Related Constraints Faced by	112-114
		the Farmers	
	5.5.6.	Inferential Analysis of Data	114-118
		5.5.6.1. Relationship Between Farmer's	114-115
		Landholdings and Technical Constraints	
		Statement	

		5.5.6.2.	Relationship Between Farmer's	115-116
			Landholdings and Important Trade-	
			related Constraints Statement	
		5.5.6.3.	Relationship Between Farmer's	117
			Landholdings and Important Social	
			Participation and Awareness Related	
			Constraints Statement	
		5.5.6.4.	Relationship Between Farmer's	118
			Landholdings and Attitude and Policy	
			Related Constraints	
5.6.	Drafting	of Compr	ehensive GACP Guidelines After Critically	118-130
	Assessin	g and Con	nparing GAP of WHO and Other Countries	
	Like Aı	merica, Ja	pan, China, European Union, India for	
	Selected	Plants		
	5.6.1.	Seeds an	d Propagation Material	120
	5.6.2.	Site Sele	ection	120-121
	5.6.3.	Soil		121
	5.6.4.	Water		122
	5.6.5.	Cultivati	on	122
	5.6.6.	Crop Ma	anagement	122
	5.6.7.	Crop Nu	trition	123
	5.6.8.	Harvesti	ng/Collection	123-125
	5.6.9.	Post-Har	vest	125-127
	5.6.10.	Personne	el	127
	5.6.11.	Equipme	ent and Materials	127-128
	5.6.12.	Docume	ntation	128
	5.6.13.	Compara	ative Investigation	128-130
5.7.	Critical	Variable A	Alignment Study to Understand Significant	131-141
	Variable	s Affecting	g the Critical Quality Attribute in Question	
	Based of	n Scientifi	c Rationale and Suggestive Improvements	
	in Agro	-Practices	for Quality Compliance with Specific	
	Reference	ce to Cont	ent of Active Constituent(S), Heavy Metal	
	Residue	and Pestic	ide Contamination	

xvii

	571	Critical Variable Alianment St	a da	121
	5.7.1.	Critical Variable Alignment St	-	131
	5.7.2.	Relationship between CMA an	-	132-135
	5.7.3.	Relationship Between CPP and	-	135-141
		5.7.3.1. Pre-cultivation Phas		135-137
		5.7.3.2. Agro-practices Phas	е	137-138
		5.7.3.3. Post-harvest Phase		138-141
5.8.	Standar	lization of Farmer's Produc	e for Same Quality	141-182
	Parame	ers and GAP/Variability Anal	ysis in Comparison to	
	Industri	al Standards		
	5.8.1.	Pre-cultivation Phase		142-155
	5.8.2.	Agro-practices Phase		155-173
	5.8.3.	Post-harvest Phase		174-182
5.9.	Draftin	of Monograph of Select	ed Medicinal Plants	182-226
	Featuri	g GAP Related Documen	tation for On-Field	
	Cultiva	ion		
	5.9.1.	Monograph on GAP for A. Ver	·a	183-194
		5.9.1.1. Botanical and	Pharmacological	183-186
		Characteristics		
		5.9.1.2. Good Agricultural P	ractices	186-192
		5.9.1.3. Standard Quality Ce	rtifications	192-194
	5.9.2.	Monograph on GAP for <i>O. sar</i>		195-206
		5.9.2.1. Botanical and	Pharmacological	195-198
		Characteristics		
		5.9.2.2. Good Agricultural P	ractices	198-204
		5.9.2.3. Standard Quality Ce		204-206
	5.9.3.	Monograph on GAP for <i>C. lon</i>		207-226
	017101	5.9.3.1. Botanical and	Pharmacological	207-210
		Characteristics	T humaconogroui	207 210
		5.9.3.2. Good Agricultural P	ractices	210-223
		5.9.3.3. Standard Quality Ce		223-226
5.10.	Econon	ic Feasibility Studies of Selecte		227-236
	5.10.1.	Cost-return Structure of A. ve		227-230
	5.10.2.	Cost return structure of <i>O</i> . sa		228-231
	<i></i>			

	5.10.3.	Cost return structure of C. longa	228-232
	5.10.4.	Cost return analysis of prevalent traditional crops in	233-236
		Punjab	
5.11.	To Dev	velop Farming Manual for Selected Plants in Local	236
	Langua	ge for Wider Benefits	
5.12.	To Sub	mit the Proposed Comprehensive GAP for Selected	236
	Medicir	al Plants to Regulatory Agencies	
CHA	PTER-6:	SUGGESTIVE RECOMMENDATIONS: A	237-247
POL	ICY DOC	CUMENT	
6.1.	Observat	ions	237-239
	6.1.1.	Agriculture in Punjab: The Background	237-238
	6.1.2.	Ecological Status	238
	6.1.3.	Need of Diversification in the State	238-239
	6.1.4.	Scope of Adoption of Medicinal Plants in the State	239
6.2.	Recomm	endations	240-247
	6.2.1.	Marketing of Medicinal Plants in Punjab: Challenges	240-241
		and Opportunities	
	6.2.2.	Mechanism for Promotion of Cultivation of Quality	242-247
		Medicinal Plants in Punjab	
CHA	PTER-7:	CONCLUSION	248-254
BIBI	LIOGRAI	РНҮ	255-284
Anne	exure-I C	oncise Farming Manual of Aloe	285-290
Anne	exure-II C	oncise Farming Manual of Ocimum	291-296
Anne	exure-III C	Concise Farming Manual of Curcuma	297-304
Anne	exure-IV F	Farming Manual of Aloe in Punjabi Language	305-310
Anne	exure-V F	arming Manual of Ocimum in Punjabi Language	311-317
Anne	exure-VI F	Farming Manual of Curcuma in Punjabi Language	318-325
Appe	endix-I (Questionnaire)	326-335
Appe	endix-II (List of farmers)	336-345
Brief	Author's	Bio-data	346-350

LIST OF FIGURES

Sr. No	Fig. No.	Content	Pg. No.
1.	1.1	Live images of selected medicinal plants.	5
2.	1.2	Basic components of good agricultural practices.	7
3.	1.3	Critical variable alignment study.	8
4.	2.1	Factors affecting the quality of raw herbal materials.	16
5.	2.2	Chronological advents of GAP.	16
б.	2.3	Common authentication techniques.	21
7.	2.4	Morphological characters of medicinal plants.	22
8.	2.5	Common microscopy characters of medicinal plants.	23
9.	2.6	Qualitative and quantitative tests of medicinal plants.	23
10.	2.7	Agro-climatic zones of Punjab.	45
11.	2.8	Parameters for agro-climatic zoning.	45
12.	4.1	Channels explored to obtain data of farmers cultivating medicinal plants in Punjab.	71
13.	4.2	Study area selected for the survey.	72
14.	5.1	Spatial distribution of meteorological research stations representing average maximum and minimum temperature ranges.	86
15.	5.2	Spatial distribution of meteorological researchStations representing rainfall ranges.	86
16.	5.3	Soil texture of benchmark soils present in Punjab.	87
17.	5.4	Potential growing areas of <i>A. vera</i> in Punjab.	90
18.	5.5	Potential growing areas of <i>P. emblica</i> in Punjab.	90
19.	5.6	Potential growing areas of <i>W. somnifera</i> in Punjab.	91
20.	5.7	Potential growing areas of <i>G. glabra</i> in Punjab.	92
21.	5.8	Potential growing areas of <i>A. racemosus</i> in Punjab.	92
22.	5.9	Potential growing areas of <i>A. paniculata</i> in Punjab.	93
23.	5.10	Potential growing areas of <i>O. sanctum</i> in Punjab.	94

24.	5.11.	Potential growing areas of <i>C. longa</i> in Punjab.	94
25.	5.12	Potential growing areas of <i>C. asiatica</i> in Punjab.	95
26.	5.13	Potential growing areas of <i>A. calamus</i> in Punjab.	95
27.	5.14	Potential growing areas of <i>R. serpentina</i> in Punjab.	97
28.	5.15	Potential growing areas of <i>O. basilicum</i> in Punjab.	97
29.	5.16	Potential growing areas of <i>C. borivilianum</i> in	98
		Punjab.	
30.	5.17	Geospatial distribution of medicinal plant	104
		cultivators on agro-climatic zones of Punjab.	
31.	5.18	Embedded demographic information of medicinal	106
		plant cultivators.	
32.	5.19	Descriptive analysis of respondent's data.	107
33.	5.20	Relationship between landholding and getting	115
		seeds and owning processing units for medicinal	
		plants for cultivation.	
34.	5.21	Relationship between landholdings with	116
		manufacturing of herbal products, owing packing	
		equipment and willingness for FSSAI approval.	
35.	5.22	Association of farmer's landholdings with type of	116
		marketing channel used.	
36.	5.23	Association of farmer's landholdings with the	117
		availability of internet and awareness regarding	
		subsidy.	
37.	5.24	CMA and their qualities for medicinal plants	132
		cultivation.	
38.	5.25	CPP for medicinal plants cultivation.	140
39.	5.26	A. vera plant.	183
40.	5.27	Agro-climatic suitability of <i>A. vera</i> in Punjab.	187
41.	5.28	Size of <i>A. vera</i> during sowing.	188
42.	5.29	A. vera field in Mansa district of Punjab.	189
43.	5.30	Leaf spot disease on A. vera leaf.	190
44.	5.31	Farm women worker harvesting <i>A. vera</i> in Punjab.	190
45.	5.32	Farmer with harvested <i>A. vera</i> leaves in Mukstar	191

		Sahib district of Punjab.	
46.	5.33	A worker washing fresh A. vera leaves at herbal	192
		industry in Punjab.	
47.	5.34	Twig of O. sanctum.	195
48.	5.35	Agro-climatic suitability of <i>O. sanctum</i> in Punjab.	199
49.	5.36	Preparation of O. sanctum nursery in Punjab.	200
50.	5.37	Farmers preparing nursery beds for O. sanctum in	201
		Punjab.	
51.	5.38	Germination of <i>O. sanctum</i> seeds on nursery beds.	201
52.	5.39	Farmers of Punjab transplanting O. sanctum	202
		seedlings.	
53.	5.40	Spacing between the seedlings of <i>O. sanctum</i> .	202
54.	5.41	Common diseases of O. sanctum.	203
55.	5.42	Matured bushy O. sanctum ready to harvest in	204
		Punjab.	
56.	5.43	Rhizomes of C. longa.	207
57.	5.44	Agro-climatic suitability of <i>C. longa</i> in Punjab.	212
58.	5.45	Size of turmeric seed during sowing.	212
59.	5.46	Raised beds preparation for cultivation of turmeric	213
		by a farmer of Punjab in Hoshiarpur district.	
60.	5.47	Farm workers preparing land for turmeric	214
		cultivation in Punjab.	
61.	5.48	Sowing of turmeric seeds by a farmer of Punjab	214
		using potato planter.	
62.	5.49	Depth of turmeric seed before getting covered by	215
		soil during sowing.	
63.	5.50	Farmer of Punjab mulching turmeric using paddy	216
		straw.	
64.	5.51	Intercropping of <i>C. longa</i> with poplar trees by a	216
		farmer of Punjab.	
65.	5.52	Pest infected turmeric leaves of <i>C. longa</i> in Punjab.	217
66.	5.53	Common diseases of C. longa.	219
67.	5.54	Traditional boiling vessel with pressure gauge at	220

		farmer's field in Punjab.	
68.	5.55	Boiling assembly devised by a farmer using drums	220
		and connecting vessels.	
69.	5.56	Furnace and inner view of vessel of improved	221
		turmeric boiler.	
70.	5.57	A farmer drying his turmeric fingers in Punjab.	221
71.	5.59	Inner yellowish appearance of turmeric after	222
		drying.	
72.	5.60	Polishing of turmeric in process by a worker in	222
		Punjab.	
73.	5.61	Interior view of polishing machine for turmeric.	223

LIST OF TABLES

S. No.	Table No.	Content	Pg. No.
1.	2.1	Taxonomic hierarchy of A. vera.	26
2.	2.2	Classical uses and formulations of A. vera.	28
3.	2.3	Taxonomic hierarchy of <i>P. emblica</i> .	28
4.	2.4	Classical uses and formulations of <i>P. emblica</i> .	29
5.	2.5	Taxonomic hierarchy of W. somnifera.	30
6.	2.6	Classical uses and formulations of <i>W. somnifera</i> .	31
7.	2.7	Taxonomic hierarchy of G. glabra.	31
8.	2.8	Classical uses and formulations of <i>G. glabra</i> .	32
9.	2.9	Taxonomic hierarchy of A. racemosus.	32
10.	2.10	Classical uses and formulations of <i>A. racemosus</i> .	33
11.	2.11	Taxonomic hierarchy of A. paniculata.	33
12.	2.12	Classical uses and formulations of <i>A. paniculata</i> .	34
13.	2.13	Taxonomic hierarchy of O. sanctum.	34
14.	2.14	Classical uses and formulations of O. sanctum.	36
15.	2.15	Taxonomic hierarchy of <i>C. longa</i> .	36
16.	2.16	Classical uses and formulations of <i>C. longa</i> .	37
17.	2.17	Taxonomic hierarchy of <i>C. asiatica</i> .	38
18.	2.18	Classical uses and formulations of <i>C. asiatica</i> .	38
19.	2.19	Taxonomic hierarchy of A. calamus.	39
20.	2.20	Classical uses and formulations of <i>A. calamus</i> .	39
21.	2.21	Taxonomic hierarchy of <i>R. serpentina</i> .	40
22.	2.22	Classical uses and formulations of <i>R. serpentina</i> .	41
23.	2.23	Taxonomic hierarchy of O. basilicum.	41
24.	2.24	Classical uses and formulations of <i>O. basilicum</i> .	42
25.	2.25	Taxonomic hierarchy of <i>C. borivilianum</i> .	42
26.	2.26	Classical uses and formulations of <i>C</i> . <i>borivilianum</i> .	43
27.	2.27	Agro-climatic zoning studies of crops.	46
28.	3.1	Different channels explored to identify farmers.	60
29.	3.2	Parameters for cost return structure of selected	63

		medicinal plants.	
30.	4.1	Minimum and maximum RPN rankings.	77
31.	4.2	Severity ratings for processes related to medicinal	78
		plants.	
32.	4.3.	Occurrence ratings of failure in population.	78
33.	4.4	Detection ratings of the failure.	79
34.	4.5	Actions to be taken base on RPN.	79
35.	5.1	Medicinal plants selected for agro-climatic zoning.	82
36.	5.2	Research stations with temperature ranges in	84
		Punjab.	
37.	5.3	Research stations with rainfall ranges in Punjab.	85
38.	5.4	Standard ecological requirements of medicinal	88
		plants.	
39.	5.5	Number of medicinal plant cultivators and area of	102
		cultivation.	
40.	5.6	Technical constraints faced by the respondents.	108
41.	5.7	Trade related constraints faced by the respondents.	110
42.	5.8	Social participation and awareness related	112
		constraints faced by the respondents.	
43.	5.9	Respondents attitude and policy related	113
		constraints.	
44.	5.10	Effect of CMA on CQA of medicinal plants	135
45.	5.11	Effect of CPP on CQA of medicinal plants.	140
46.	5.12	Standardization based on authentication of seed.	143
47.	5.13	Checklists for the farmers and recommendations	144
		for assuring seed quality.	
48.	5.14	Standardization based on selection of cultivation	146
		site.	
49.	5.15	Checklist and recommendations for assuring good	147
		site selection.	
50.	5.16	Standardization based on treatment of soil.	148
51.	5.17	Checklist and recommendations to assure soil	151
		quality.	

52.	5.18	Suggestive popular plants used in	151
		phytoremediation.	
53.	5.19	Suggested means of pesticides removal.	153
54.	5.20	Standardization based on water quality.	154
55.	5.21	Checklist and recommendations to assure the	155
		quality of water.	
56.	5.22	Standardization based on the process of sowing.	157
57.	5.23	Checklist and recommendation to assure optimum	160
		sowing and site preparation.	
58.	5.24	Standardization based on irrigation.	161
59.	5.25	Checklist and recommendation to assure optimum	163
		irrigation.	
60.	5.26	Standardization based on crop nutrition.	164
61.	5.27	Checklist and recommendations to assure optimum	165
		utilization of crop nutrition.	
62.	5.28	Standardization based on pesticides/insecticide	166
		application.	
63.	5.29	Checklist and recommendations for optimum use	168
		of pesticides, insecticides.	
64.	5.30	Standardization based on plant management.	170
65.	5.31	Checklist and recommendations to assure proper	171
		plant management.	
66.	5.32	Standardization based on harvesting.	172
67.	5.33	Checklist and recommendations to assure proper	173
		harvesting.	
68.	5.34	Standardization based on collection of medicinal	175
		plants.	
69.	5.35	Checklist and recommendations to assure optimum	176
		collection.	
70.	5.36	Standardization based on drying of medicinal	177
		plants.	
71.	5.37	Checklist and recommendations to assure optimum drying of medicinal plants.	179

72.	5.38	Standardization based on storage of medicinal	180
		plants.	
73.	5.39	Checklist and recommendations to assure optimum storage of medicinal plants.	181
74.	5.40	Morphological characteristics of A. vera.	183
75.	5.41	Organoleptic characters of A. vera.	184
76.	5.42	Important microscopic characters of A. vera.	185
77.	5.43	Physico-chemical parameters of A. vera.	192
78.	5.44	Qualitative and quantitative ranges of emodin in <i>A</i> . <i>vera</i> .	193
79.	5.45	Toxicity indicators of <i>A. vera</i> .	193
80.	5.46	Morphological characteristics of <i>O. sanctum</i> .	196
81.	5.47	Organoleptic characters of <i>O. sanctum</i> .	196
82.	5.48	Important microscopic characters of <i>O. sanctum</i> .	197
83.	5.49	Diseases of <i>O. sanctum</i> .	203
84.	5.50	Physico-chemical parameters of <i>O. sanctum</i> .	204
85.	5.51	Qualitative and quantitative ranges of eugenol and	205
		urosolic acid in O. sanctum.	
86.	5.52	Toxicity indicators of O. sanctum.	206
87.	5.53	Morphological characteristics of <i>C. longa</i> .	208
88.	5.54	Organoleptic characters of C. longa.	208
89.	5.55	Important microscopic characters of C. longa.	209
90.	5.56	Diseases of C. longa.	217
91.	5.57	Physico-chemical parameters of C. longa	223
92.	5.58	Qualitative and quantitative ranges of curcumin in	224
		C. longa	
93.	5.59	Toxicity indicators of <i>C. longa</i> .	224
94.	5.60	Standard requirements for C. longa as per ASTA,	225
		ESA, and Agmark.	
95.	5.61	Agmark specifications of different grades of Turmeric.	226
96.	5.62	Agro-economics of <i>A. vera</i> .	229
97.	5.63	Agro-economics of <i>O. sanctum</i> .	230
98.	5.64	Agro-economics of C. longa.	231

99.	5.65	Cost-return analysis of wheat in Punjab.	234
100.	5.66	Cost-return analysis of rice in Punjab.	234
101.	5.67	Comparative cost-return analysis between traditional crops and medicinal plants.	235
102.	7.1	Comparative analysis between agro-climatic zones for cultivating medicinal plants.	249

LIST OF PLANT & MICROBE SPECIES

Abroma augusta
Aconitum balfourii
Aconitum heterophyllum
Acorus calamus
Acrocomia aculeata
Acrocomia aculeata
Acrocomia aculeate
Aloe barbadensis
Aloe vera
Alpinia galangal
Alstonia scholaris
Amaranthus caudatus
Andrographis paniculata
Arachis hypogaea
Argania spinosa
Artemisia annua
Arundo donax
Asparagus racemosus
Aspergillus flavus
Bacopa monnieri
Beta vulgaris
Brassica juncea
Brassica campestris
Brassica carinata
Brassica napus
Brassica nigra
Caesalpinia sappan
Centella asiatica
Chloris gayana
Chlorophytum borivilianum
Chrysopogon zizanioides

Colchicum luteum
Commiphora wightii
Curcuma longa
Cyamopsis tetragonoloba
Emblica officinalis
Escherichia coli
Euphorbia tirucalli
Glycine max
Glycine max
Glycyrrhiza glabra
Helianthus annuus
Jatropha curcas
Jatropha curcas
Leishmania donovani
Leishmania major
Lesquerella fendleri
Medicago sativa
Mentha spicata
Moringa oleifera
Ocimum sanctum
Ocimum basilicum
Panicum virgatum
Phalaris arundinacea
Phyllanthus emblica
Pongamia pinnata
Pseudomonas aeruginosa
Rauvolfia serpentina
Ricinus communis
Salicornia bigelovii
Salmonellae spp.
Salsola kali
Salvadora persica

Solanum tuberosum

Spinacia oleracea

Terminalia chebula

Trigonella foenum graecum

Triticum aestivum

Withania somnifera

Zea mays

Ziziphus jujuba

LIST OF PUBLICATIONS DURING Ph.D.

ARTICLES DURING Ph.D. TENURE (Total Impact Factor: 25.6) Articles from the Ph.D. Thesis

1. Singh PA, Sood A, Baldi A. Determining Constraints in Medicinal Plants Adoption: A Model Geospatial Study in the Indian State of Punjab, *Journal of Applied Research on Medicinal and Aromatic Plants*, 2021, 12 (3), 1-10. Impact factor (3.4). [Scopus Indexed].

2. Singh PA, Sood A, Baldi A. An Agro-Ecological Zoning Model Highlighting Potential Growing Areas for Medicinal Plants In Punjab, *Indian Journal of Pharmaceutical Education and Research*, 2021, 55 (2), S492–S500. Impact factor (0.5). [Scopus Indexed].

3. Singh PA, Sood A, Baldi A. Highlighting Agro-Ecological Zones to Upscale the Production of Immunity-Booster Plants in Punjab, *Research Journal of Agricultural Sciences*, 2021, 12 (3), 865–870. NAAS rating (4.0). [Listed in UGC-Care].

4. **Singh PA**, Bajwa N, Baldi A. A Comparative Review on the Standard Quality Parameters of Turmeric, *Indian Journal of Natural Products*, 2021, 35(1), 2-8.

5. Singh PA, Bajwa N, Baldi A. Possible Role of Traditional Systems of Medicine to Manage COVID-19: A Review, *Israel Journal of Plant Sciences*, 2020, 1-26. Impact factor (1). [Scopus Indexed].

6. Singh PA, Bajwa N, Naman S, Baldi A. A Review on Robust Computational Approaches Based Identification and Authentication of Herbal Raw Drugs, *Letters in Drug Design & Discovery*, 2020, 17, 1066-1083. Impact factor (1.2). [Scopus Indexed].

7. **Singh PA** and Baldi A. Good Agricultural Practices: A Prequisite Approach for Enhancing the Quality of Indian Herbal Medicines, *Biomedical Journal of Scientific and Technical Research*, 2018, 5(5), 1-4.

8. **Singh PA** and Baldi A. Evidence Based Pharmacology of Herbal Formulation: Need of the Hour, *Journal of Complementary Medicine and Alternative Healthcare*, 2017, 3(5), 001-003.

Other Articles

9. Machhi J, Cohen J, Kevadiya B, Gendelman H, **Singh PA**, Chang L, *et al.* Nanocarrier Vaccines for SARS-CoV-2. *Advanced Drug Delivery Reviews*, Elsevier, 2021, 171, 215-239. **Impact factor (15.4)**. **[Scopus Indexed].**

10. Machhi J, Shahjin F, Cohen J, Kevadiya B, Gendelman H, **Singh PA**, Chang L, *et al*. A Role of Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention, *Journal of Neuroimmune and Pharmacology*, Springer, 2021, 1-19. **Impact factor** (4.1). [Scopus Indexed].

BOOK CHAPTERS:

11. Bajwa N, **Singh PA**, Sodhi RK, Baldi A, Jyoti K, Chandra R, Madan J. Chronicle of Nanomicelles in Drug Delivery: from Bench to Bedside. In: Nanomaterials: Evolution and Advancement towards Therapeutic Drug Delivery, Part-I. Chapter: 5. **Bentham Science** edited by Surendra Nimesh, Nidhi Gupta, Ramesh Chandra. 2021, pp. 161-210.

12. Bajwa N, **Singh PA**, Baldi A, Jyoti K, Chandra R, Madan J. Scale-up, Preclinical and Clinical Status of Poly (Lactide-Co-Glycolide) and its Copolymers based Drug Delivery Systems. In: Nanomaterials: Evolution and Advancement towards Therapeutic Drug Delivery, Part-II. Chapter: 7. **Bentham Science** edited by Surendra Nimesh, Nidhi Gupta, Ramesh Chandra. 2021, pp. 246-292.

PAPER PRESENTED AT CONFERENCES/SEMINARS

International Conference

1. Delivered oral presentation on topic entitled "Devising Artificial Intelligence System using Complex Datasets for Identification and Authentication of Potential Indian Spices" at SPER, Nepal International conference held at Kathmandu University, Nepal on 7-8 June 2019.

National Conferences and Seminars

Oral presentations

2. Delivered oral presentation titled "Computational Approaches Based Quality Determination of Selected Medicinal Plants" at International Conference on Herbal Medicines: Research and Commerce-Global Perspectives at L.M. College of Pharmacy Ahmedabad held on $27^{\text{th}} - 29^{\text{th}}$ Dec, 2018.

3. Delivered oral presentation titled "Development of Agro-climatic Zoning Model for Selected Medicinal plants in Punjab" at National conference on Water & Soil Resource Management for Sustainable Agriculture & Biodiversity Conservation organized by Department of Agricultural Sciences, Swami Vivekanand Group of Institutes, Banur, Punjab, India on 8-9th November 2019. **[Won Award]**.

Poster presentations

4. Presented a paper titled "Modeling an Agro-ecological Zoning Methodology to Highlight Potential Growing Areas of Selected Medicinal Plants in Punjab" at SFEC-2020, 7th International Congress of Society for Ethnopharmacology, India, held at Jamia Hamdard, New-Delhi from 15-17th February, 2020.

5. Presented paper titled "Cultivation of Medicinal Plants as Available Alternative for Uplifting Farmer's Income in Punjab" at national seminar on Agrarian Crisis in Punjab in Panjab University Regional Centre, Shri Mukstar Sahib, Punjab, India on 29th March 2019.

6. Presented paper titled "Developing an Agro-climatic Zoning Model and Identification of Constraints to Access Possibilities of Medicinal Plants Cultivation in Punjab" in ICP (International Conference of Pharmacy) on the theme "Pharmacy: Realigning the Focus on Health" organized by School of Pharmaceutical Sciences, Lovely Professional University held on 13-14th September 2019.

7. Presented a paper titled "Novel Bilayered Formulation for Sequential Release of Desmopressin Acetate and Tolterodine Tartrate: An Effective Way to Manage Nocturnal Enuresis" at 6th World Congress on Nanomedical Sciences-ISNSCON-2018, Chemistry-Biology Interface 2019 and Conference on Science and Technology for Future of Mankind held at Vigyan Bhawan, New-Delhi on 7-10 Jan, 2019. **[Won Award]**.

8. Presented a paper titled "Robust Artificial Methods for Identification and Authentication of Indian spices" at 23rd Annual National Convention of Association of Pharmaceutical Teachers of India (APTICON-2018) held at Jaipur from 5-6th October, 2018. **[Won Award]**.

9. Presented a paper titled "A Novel Technique to Authenticate Spices Using Complex Computational Approaches" at Integrated Conference on Ayurveda, Agriculture & Pharmaceutical Sciences at Arogya Sangoshthi sponsored by Ministry of AYUSH and Namo gange trust, held at Lovely Professional University, Jalandhar, Punjab on 13-14th October, 2018. **[Won Award]**.

10. Presented a paper titled "Computational Authentication of Herbal Drugs: One Stop Solution Technique for Quality Standardization and Identification of Adulterants" at 70th Indian Pharmaceutical Congress (IPC), held at Amity University, Noida from 21-23 Dec, 2018.

11. Presented a paper titled "HPTLC Fingerprinting Profiling and Validated HPLC Method for the Determination of Betulin in the Stem Bark of *Tectona grandis*" at 69th Indian Pharmaceutical Congress (IPC) held at Chitkara University, Rajpura, Punjab from 22-24th December, 2017.

LIST OF ABRREVIATIONS

A. annua	Artemisia annua L.
A. calamus	Acorus calamus
A. paniculata	Andrographis paniculata
A. racemosus	Asparagus racemosus
A. vera	Aloe vera (Linn.) Burm.f.
AHP	American Herbal Pharmacopoeia
AHPA	The American Herbal Products Association
APCI	Atmospheric Pressure Chemical Ionization
API	Ayurvedic Pharmacopoeia of India
app.	Application
As	Arsenic
ASTA	American Spice Trade Association, Inc.
ASU	Ayurvedic, Siddha, and Unani
AYUSH	Ayurveda, Yoga and Naturopathy, Unani, Siddha and
	Homeopathy
B. campestris	Brassica campestris
B. carinata	Brassica carinata
B. juncea	Brassica juncea
B. napus	Brassica napus
B. nigra	Brassica nigra
BC	Backward Class
C. asiatica	Centella asiatica
C. borivilianum	Chlorophytum borivilianum
C. longa	Curcuma longa L.
Cd	Cadmium
CIBRC	Central Insecticides Board and Registration Committee
CIMAP	Central Institute of Medicinal and Aromatic Plants
CITES	Convention on International Trade in Endangered Species of Wild
	Flora & Fauna
cm	Centimetre
СМА	Critical Material Attributes

COVID-19	Coronavirus Disease- 2019
COX	Cyclooxygenase
CPF	Chlorpyrifos
СРР	Critical Process Parameters
CQA	Critical Quality Attributes
Cr	Chromium
CSIR	The Council of Scientific & Industrial Research
Cu	Copper
DAP	Di-ammonium Phosphate
DDT	Dichloro-diphenyl-trichloroethane
DET	Detection
DMAPR	The Directorate of Medicinal and Aromatic Plants Research
DPPH	2,2-diphenyl-1-picryl-hydrazyl-hydrate
E. coli	Escherichia coli
E. officinalis	Emblica officinalis Gaertn.
ESA	European Spice Association
FAO	The Food and Agriculture Organization
FASCs	Farm Advisory Services Centers
FCs	Facilitation Centres
FDA	Food and Drug Administration
Fe	Iron
FMEA	Failure Mode and Effect Analysis
FPO's	Farmer Producer Organizations
FSSAI	Food Safety and Standards Authority of India
FTIR	Fourier Transform Infrared
FYM	Farm Yard Manure
g	Gram
G. glabra	Glycyrrhiza glabra
GACP	Good Agricultural and Collection Practices
GAP	Good Agricultural Practices
GC	Gas Chromatography
GIS	Geographic Information System

GMP	Good Manufacturing Practices
H&MP	Herbal and Medicinal Plants
На	Hectare
НСН	Hexachlorocyclohexane
Hg	Mercury
HHRC	Herbal Health Research Consortium
HMHDP	High Molecular Weight High-Density Polyethylene
HPLC	High Pressure Liquid Chromatography
HPTLC	High-Performance Thin Layer Chromatography
h	Hours
i.v.	Intravenous
IC ₅₀	The Half Maximal Inhibitory Concentration
ICAR	The Indian Council of Agricultural Research
ICMR	Indian Council of Medical Research
IDMA	Indian Drugs Manufacturer Association
IITM	Indian Institute of Tropical Meteorology
IMD	Indian Meteorological Department
INR	Indian Rupee
ISM	Indian System of Medicine
IUCN	International Union for the Conservation of Nature
Kg	Kilogram
KVKs	Krishi Vigyan Kendras
L	Litres
L.S.	Longitudinal Section
LC-MS	Liquid Chromatography-Mass Spectrometry
m	Meter
MAP	Medicinal and Aromatic Plants
max	Maximum
MCF-7	Michigan Cancer Foundation-7
mg	Milligram
min	Minimum
mins	Minutes

mL	Millilitres
mL/min	Millilitres per Minute
mm	Millimetre
MPS	Mean Percentage Score
MS	Mass Spectroscopy
MSP	Minimum Support Price
MT	Metric Ton
NGO	Non-Government Organisation
n.l.t	Not Less Than
n.m.t	Not More Than
N.P.K.	Nitrogen Phosphorus Potassium
NABARD	National Bank for Agriculture and Rural Development
NABL	National Accreditation Board for Testing and Calibration
	Laboratories
Ni	Nickel
nm	Nanometre
NMPB	National Medicinal Plants Board
O. basilicum	Ocimum basilicum
O. sanctum	Ocimum sanctum L.
OBC	Other Backward Class
OCC	Occurrence
P. aeruginosa	Pseudomonas aeruginosa
P. emblica	Phyllanthus emblica
PAU	Punjab Agricultural University
Pb	Lead
рН	Potential of Hydrogen
ppb	Parts per Billion
ppm	Parts per Million
PPVRFRA	Protection of Plant Varieties and Farmers' Right Authority
PRECIS	Providing Regional Climates for Impact Studies
QbP	Quality by Produce
QCI	Quality Council of India

QPM	Quality Planting Material
QRM	Quality Risk Management
q	Quintals
R. serpentina	Rauvolfia serpentina (L.) Benth. ex Kurz.
RA	Rosmarinic Acid
RCFC	Regional cum Facilitation Centre
RCT	Randomized Clinical Trails
RET	Rare, Endangered and Threatened
R _f	Retention Factor
RPN	Risk Priority Number
Rs.	Rupees
RRL	Regional Research Laboratory
S	Seconds
SAP	Sustainable Agricultural Practices
SC	Scheduled Caste
SEV	Severity
SHGs	Self Help Groups
SOP	Standard Operating Procedures
Spp.	Species
SPSS	Statistical Package for the Social Sciences
ST	Scheduled Tribe
T.S.	Transverse Section
ТСМ	Traditional Chinese Medicine
Th	Thorium
Ti	Knol Khol
TLC	Thin Layer Chromatography
U	Uranium
UA	Ursolic Acid
UK	The United Kingdom
US	The United States
UV	Ultraviolet
W. somnifera	Withania somnifera

WHO	World Health Organization
Wt.	Weight
Үр	Yield Potential
Zn	Zinc
μ	Micro
µg/mL	Micro gram per Millilitres
μL	Microliters
%	Per cent
% w/v	Per cent Weight by Volume
% w/w	Per cent Weight by Weight
°C	Degree Celsius
\$	Dollar