CHAPTER 6

URANIUM CONCENTRATION IN WATER AND BIOKINETIC MODELLING

This chapter deals the measurement of uranium concentration in water collected from different sources of water (surface water and underground water) using LED Fluorimeter. To understand its impact, the lifetime average daily dose (LADD) and hazard quotient (HQ) has been calculated. Further, Biokinetic modelling using Hair compartment model has been done for dose estimation to various organs in humans due to intake of water. In addition, the physicochemical parameters in water has been also measured. The detailed introduction about the topic, measurement procedure, formula used for calculations, results, discussion and conclusion have been discussed in this following section.

6.1 INTRODUCTION

Naturally radioactive element Uranium occurs in dispersed form in earth's crust. Uranium forms ions with the oxidation states of +4 (UO₂ and U⁴⁺) and +6 (UO₃ and UO_2^{2+}) (Banks et al., 1995). Under aerobic conditions uranium is soluble in water because it forms bond with oxygen to form uranyl ion (UO_2^{2+}) or uranium oxide (UO_2) . Uranium present in groundwater is because of the water coming out of the rocks and soils which contain uranium. The concentration of uranium in water depends upon several factors such as lithography, geomorphology and other geological conditions of the region (Sridhar Babu et al., 2008) as well as the amount of uranium present in rock through which the water has been passes. Nuclides of uranium emit alpha rays of high ionization power which may cause harmful effects to the human beings if inhaled or ingested. Uranium accumulation in humans result in chemical and radioactive effects. Chronic exposure of uranium has potential health risk (ATSDR, 1999). Mainly kidneys, liver and bones are the principal sites of the human body where uranium is mainly deposited (ATSDR, 1990; Mehra et al., 2007). The toxicity of uranium is function of the route of exposure, particle solubility, contact time and route of elimination (ATSDR, 1999). According to various estimations, 15% uranium can be ingested through food while 85% through drinking water (Cothern and Leppunbusch, 1983). Uranium has radiological toxicity with the two important target organs being the kidneys and lungs (WHO, 2004).

Exposure to uranium can cause two types of health risks: radiological risk and chemical risk. Radiological cancer risk is expressed in the terms of excess cancer risk

(ECR). The chemical/noncarcinogenic risk for uranium has been expressed in terms of lifetime average daily dose (LADD) and hazard quotient (HQ). LADD is defined as the quantity of uranium ingested per kilogram of body weight per day. Hazard quotient (HQ) is defined as the ratio of the lifetime average daily dose (LADD) of the uranium to its reference dose (R_fD) or tolerable daily intake (TDI) of 1 µgkg⁻¹d⁻¹ (USEPA, 1989; WHO, 1998, 2004).

The biokinetics of uranium in the mammalian body has been the subject of extensive experimental and epidemiological investigation over the past few decades and numerous biokinetic models have been developed (Lipsztein 1981; Durbin 1984; Wrenn et al. 1985; Legett and Harrison 1995). Latest model in this series is the Compartmental Model of Uranium in Human Hair proposed by Li et al., 2009 by modifying ICRP's Biokinetic model for uranium (ICRP, 1995). This model describes the kinetics of ingested uranium and illustrates the deposition of uranium from blood stream to other compartments, transformation of uranium from one organ to another and similarly its reabsorption, back from organs to blood following final excretion via urine, faeces and hair.

The absorption of uranium from gastrointestinal tract is controlled by the solubility of uranium compound (Berlin and Rudell, 1986), previous food consumption (La Touche et al., 1987) and the concomitant administration of oxidizing agents (Sullivan et al., 1986). After entering the plasma, the uranyl ion complexed with bicarbonate, citrate anions and plasma proteins is dispersed in body tissues (Keith et al., 2007). Chemical toxicity, metabolic toxicity, and physiologically dynamic toxicity are among the numerous known adverse effects of uranium consumption on health. Additionally, recent research indicates that there may be injury to the brain, reproduction, embryonic development that is aberrant or sluggish, and gene expression. An individual's overall dose is influenced by a variety of factors, such as:

- The amount of the contaminant that was inhaled or ingested.
- A portion of the contaminant entered the GI or respiratory tracts.
- The quantity of the contaminant transported by bodily fluids.
- The quantity of the contaminant deposited in the organs or target tissues.

Hydrochemistry plays an important role to decide the groundwater quality and suitability of water for drinking purposes for which determination of physico-chemical parameters like Electrical Conductivity (EC), pH, Total Dissolved Solids (TDS) in water is important. These water quality parameters also helps in studying the modelling of speciation of radio nuclides and various other contaminants present in aquatic environment due to various anthropogenic and natural activities. Measurement of pH signifies the presence of hydrogen ion concentration which further denotes the degree of acidity and alkalinity. Although it has no immediate negative health implications, a number below 7 will have a sour taste, and a value above 7 will have an alkaline taste. pH is an important monitoring parameter to assess health of aquatic ecosystem, irrigation sources and discharges, livestock, drinking water sources, industrial discharges and intakes. The capacity of water to carry an electric current is determined by its electrical conductivity (EC). This capacity mostly depends on the anions and cations present in the water as well as on ion mobility, valence, and temperature.

The total amount of dissolved salts in water directly affects its electrical conductivity. Water contains minute amounts of organic materials and inorganic salts, which are together referred to as TDS. TDS comprises various inorganic salts such as Ca^{2+} , Mg^{2+} , K^+ , Na^+ , CO_3^{2-} , HCO^{3-} , Cl^- , SO_4^{2-} and organic ionic species. Natural sources of TDS include rocks, air, mineral springs, salt deposits etc. and anthropogenic sources include sewage, urban run-offs and industrial effluents. High value of TDS influences the taste, hardness and corrosive property of water. Humans who consume water with high TDS levels for an extended period of time may develop kidney stones and heart problems. High TDS levels may induce gastrointestinal distress in humans (Jain et al., 2018). Although, till date no agency has claimed the adverse health effects because of low TDS levels but surely it will be lacking in minerals such as calcium, magnesium and zinc etc. The highest recommended value of TDS is 500 mgl⁻¹ below which the water is recommended to be suitable for drinking purposes (USEPA, 2011).

The aim of this study is to measure the concentration of uranium in water samples and hence to find out the biological risks which affects the living beings in this area under investigation and their relative comparison of different source of water such as groundwater, canal water, water works tanks, ponds. Also, dose estimation to various organs using biokinetic modelling and various physicochemical parameters has been calculated in the collected water samples.

6.2 METHODOLOGY

6.2.1 Sample Collection and Lab Work

Total 200 water samples were collected from different sources of water underground water (like handpump, borewell and submersible) and surface water (like canal water, water works tanks, ponds) from different villages in the studied area of Barnala (100 samples) and Moga (100 samples) districts according to grid pattern to cover the whole area. Before collecting the samples, the tap or handpump was made to run for few minutes to collect the fresh water and then collected the water sample in polythene bottles which were properly cleaned with 5% nitric acid to breakdown uranium complexes and then rinsed with distilled water.

In the lab, the buffer solution was prepared using sodium pyrophosphate (Na4P2O7.10H2O) solution (5%) in distilled water and a pH value of 7.0 was adjusted by adding dilute (10% vol/vol) phosphoric acid solution drop wise (Rathore et al., 2004). LED Fluorimeter has been calibrated with standard samples containing 10, 50 and 100 μ gl⁻¹ of uranium against observed values of fluorescence. The lower detection limit of instrument is 0.1 ± 10% μ gl⁻¹ (LED Fluorimeter manual).

Figure 6.1: Measurement of uranium concentration in water samples using LED Fluorimeter (Environment Science & Technology lab, Central University of Punjab, Bathinda)

After calibration, the cuvette was rinsed with distilled water before filling the new sample of water. Cuvette was filled with 6 ml of water sample with 10% of fluren added in it with the help of pippete. Then cuvette was inserted in the cuvette chamber in the LED fluorimeter and then the value of uranium concentration in μ gl⁻¹ is obtained on the screen (Figure 6.1).

6.2.2 Biokinetic Modelling

A mathematical simulation provided by Li et al. (2009)'s "Hair compartment model" describes the passage, absorption, translocation, retention in different organs and tissues, and excretion routes of uranium in an adult human following chronic intake through ingestion. One directly from plasma and the other from soft tissue with intermediate turnover are assumed to be the two input channels for the hair compartment, with transfer rates as described in the model- Using the "Uranium Biokinetics Calculator Version B" available online at http://www.wise-uranium.org/cubkb.html, the residual uranium retention and excretion were calculated. The calculator is based onportions of the ACTLITE code by Eckerman (1999). The hair model is adopted from Li 2009. The Hair model is only applicable when "Ingestion" serves as the adult's intake route. The following parameters are beforehand set in the calculator:

Water consumption rate $= 1.4 \text{ Lday}^{-1}$ (EPA, 1997)Body weight= 68.831 kgKidney mass= 310 gUrine volume $= 1.38 \text{ Lday}^{-1}$ Faeces mass $= 135 \text{ gday}^{-1}$

6.2.3 Physiochemical Parameters

The physico-chemical water quality parameters like pH, electrical conductivity (EC) and total dissolved solids (TDS) in drinking water samples have been measured. For this, pH meter and EC/TDS meter were dipped in collected water and readings were noted on the spot.

6.3 FORMULAE USED

6.3.1 To Calculate Radiological Risk Assessment

The measured values of uranium concentration have been used to calculate the radiological risk assessment for the local population using following formulae as given by USEPA, 2000:

• *Excess cancer risk (ECR)*=Activity of uranium conc. $(Bql^{-1}) \times RF \times IGW \times ED(1)$ Unit conversion factor 1 µgl⁻¹ = 0.0252 Bql⁻¹

RF is the risk factor (per Bql⁻¹),

IGW is ingestion rate of water = 2 lday^{-1} (WHO, 2011),

ED is exposure duration = 70 years ($70 \times 365 = 25550$ days) (WHO, 2011).

***** Excess Cancer Mortality Risk:

Activity of uranium conc. $(Bql^{-1}) \times Mortality cancer risk coefficient$ (2)

***** Excess Cancer Morbidity Risk:

Activity of uranium conc. $(Bql^{-1}) \times Morbidity$ cancer risk coefficient (3) According to the USEPA (1999), the mortality and morbidity cancer risk coefficients of $1.13 \times 10^{-9} Bql^{-1}$ and $1.73 \times 10^{-9} Bql^{-1}$, respectively.

6.3.2 To Calculate Chemical Risk Assessment

Chemical risk has been accessed using the measured uranium concentration. Following formulae has been given by USEPA (2000):

★ Lifetime average daily dose (LADD) (µgkg⁻¹d⁻¹):

$$LADD((\mu g)kg^{-1}d^{-1}) = \frac{(CU \times IR \times EF \times ED)}{(AT \times BW)}$$
(4)

Where, CU is the concentration of uranium in groundwater (μ gl⁻¹),

IGW is ingestion rate of water (2 lday⁻¹) (WHO, 2011),

EF is the exposure frequency (365 daysy⁻¹) (USEPA, 2011),

ED is the lifetime exposure duration (70 y) (USEPA, 2011),

BW is the body weight (70 kg) (ICRP, 1975; USEPA, 2011) and

AT is the average exposure time for non-carcinogens (70×365 d) (USEPA, 2002).

✤ Hazard quotient (HQ) (USEPA, 1989):

$$HQ = \frac{LADD}{R_f D}$$
(5)

Where, $R_f D$ is reference dose (i.e. 1 $\mu g k g^{-1} d^{-1}$) (WHO, 2011).

6.3.3 To Calculate Annual Effective Ingestion Dose

The annual effective ingestion dose for various age groups has been determined as follows (USEPA, 2000).

Ingestion Dose $(Svy^{-1}) = Activity of uranium conc. (Bql^{-1}) \times IGW \times DCF \times 365$ (6) Where, IGW is the ingestion rate of water for various age groups recommended by WHO (2011),

DCF is the dose conversion factor for various age groups (SvBq⁻¹) given by the IAEA (2011).

6.4 **RESULTS AND DISCUSSION**

6.4.1 Uranium Concentration in Water

Table 6.1 shows the measured uranium concentration in water samples and associated cancer morbidity, mortality risk, hazard quotient in both the districts of the studied area. In **Barnala district**, the uranium concentration in water samples varies from a minimum value of $28.5 \,\mu gl^{-1}$ (Barnala) to maximum value of $234.7 \,\mu gl^{-1}$ (Bhadalwad) with an average value of $111.43 \,\mu gl^{-1}$. The measured average value is higher than the $30 \,\mu gl^{-1}$ as recommended by WHO (2011), 100 BqL⁻¹ by WHO (2004) and $60 \,\mu gl^{-1}$ by AERB (2004). The calculated cancer mortality risk and cancer morbidity risks varies from 4.15×10^{-5} to 34.15×10^{-5} with an average value of 16.21×10^{-5} and 6.35×10^{-5} to 52.29×10^{-5} with an average value of 24.82×10^{-5} , respectively. The measured values are lower than the recommended limits of 1.67×10^{-4} (AERB, 2004). The life time daily average dose (LADD) of uranium due to ingestion of water ranged between 0.81 to $6.70 \,\mu gkg^{-1}day^{-1}$ with an average value of $3.18 \,\mu gkg^{-1}day^{-1}$ and hazard quotient

according has same numerical values as that of LADD because the value of reference dose is unity (WHO, 2011).

In **Moga district**, the measured uranium concentration varies from a minimum value of 33.4 µgl⁻¹ (Dharamkot) to maximum value of 135.1 µgl⁻¹ (Badhni) with an average value of 73 µgl⁻¹. The measured average value is higher than the 30 µgl⁻¹ as recommended by WHO (2011), 100 BqL⁻¹ by WHO (2004) and 60 µgl⁻¹ by AERB (2004). The calculated cancer mortality risk and cancer morbidity risks varies from 4.86×10^{-5} to 19.66×10^{-5} with an average value of 10.62×10^{-5} and 7.44×10^{-5} to 30.10×10^{-5} with an average value of 16.26×10^{-5} , respectively. The measured average values are lower than the recommended limits of 1.67×10^{-4} (AERB, 2004). The life time daily average dose (LADD) of uranium due to ingestion of water ranged between 0.95 to $3.86 \,\mu g k g^{-1} d a y^{-1}$ with an average value of $2.08 \,\mu g k g^{-1} d a y^{-1}$ and hazard quotient according has same numerical values as that of LADD because the value of reference dose is unity (WHO, 2011).

Table 6.2 shows the calculated annual effective dose due to ingestion of uranium in drinking water for various life stage groups having different ages like infants (0-12 months), children (1-8 years), males (9-18 years, adults), females (9-18 years, adults), pregnancy (14-50 years) and lactation (14-50 years) in both the Barnala and Moga districts. In **Barnala district**, the calculated annual effective dose due to ingestion of uranium in drinking water for all the age groups lies in the range of 31.93 to 2112.28 μ Svy⁻¹ with an average value of 184.89 μ Svy⁻¹. The measured average value is higher than 100 μ Svy⁻¹ as recommended by WHO (2011) and the EUCD (2013).

In **Moga district**, the calculated annual effective dose due to ingestion of uranium in drinking water for various age groups lies in the range of 35.92 to 337.55 μ Svy⁻¹ with an average value of 120.84 μ Svy⁻¹. The measured average value is higher than 100 μ Svy⁻¹ as recommended by WHO (2011) and the EUCD (2013).

Even though infants consume less water than other rest age groups, the annual effective dose is significantly higher than other age groups which may be due to differences in infants metabolism and smaller organ weights, resulting in higher doses for many radionuclides (Patra et al., 2013; Duggal et al., 2020).

In the studied region, the average uranium concentration in 0.5% water samples have lower value than the safe limit of 30 μ gl⁻¹ as recommended by WHO (2011), 30 μ gl⁻¹ (USEPA, 2011) and 22% samples have lower value than 60 μ gl⁻¹ by AERB

(2004). The calculated annual effective dose due to ingestion of uranium in water for various age groups is higher than 100 μ Svy⁻¹ as recommended by WHO (2011) and 1 mSvy⁻¹ as recommended by ICRP (1990). The calculated hazard quotient in 98% of samples is higher than one hence these areas have increased probability of kidney and lung diseases (ATSDR, 2013; Duggal et al., 2013).

6.4.1.1 Frequency Distribution. For **Barnala district**, Figure 6.3 shows a frequency distribution graph for uranium concentration in water samples. It has been observed that concentration in 1% of the samples lie between 0-30 μ gl⁻¹, in 14% samples it lies between 30-60 μ gl⁻¹ and in 27% samples it lies between 60-90 μ gl⁻¹and rest of 58% samples lies between 90-240 μ gl⁻¹.

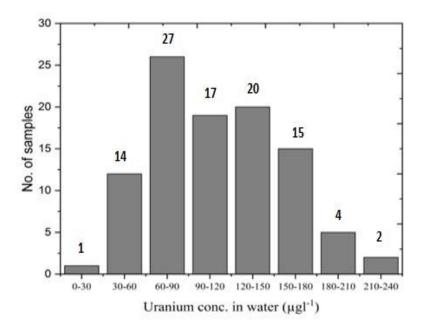


Figure 6.2: Frequency distribution of uranium concentration in Barnala district

For **Moga district**, Figure 6.4 shows a frequency distribution graph for uranium concentration in water. It has been observed that concentration in 34% of the samples lie between 0-60 μ gl⁻¹, in 45% samples it lies between 60-90 μ gl⁻¹ and rest of 21% samples it lies between 90-150 μ gl⁻¹.

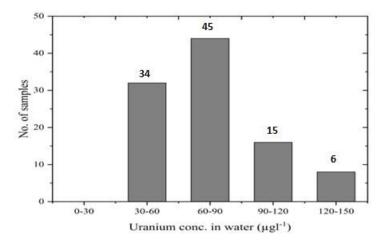


Figure 6.3: Frequency distribution of uranium concentration in Moga district

6.4.1.2 Correlation between Uranium Concentration in Groundwater with Depths (in Meters).

In the studied are, from the measured values, a weak correlation (R^2 =0.006) has been found between uranium concentration in underground water samples with the depth (24-183 meter) as shown Figure 6.2. In an oxidizing environment the groundwater in fracture contains an appreciable amount of dissolved oxygen, this oxidizes uranium to hexavalent species which is mobile and easily leaches into water and get transported. Under reducing conditions, uranium is released into tetravalent state leading to low concentration in water as a result of stabilization of the sparingly soluble mineral, uraninite. Hence deeper groundwater would have low concentration of uranium because of more reducing conditions and less uranium solubility.

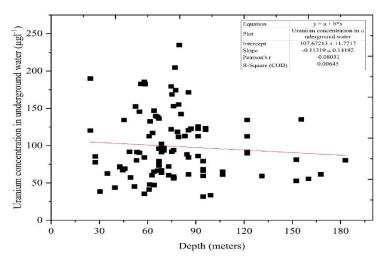


Figure 6.4: Correlation of uranium concentration in underground water with depth (in meters) in studied area

For **Barnala district**, Figure 6.5 shows the average uranium concentration in underground water samples collected from varying depth shallow (having depth <50 m), median (having depth 50m < depth <75m) and deep (having depth >75m). it has been found that the average uranium concentration in median depth samples have higher concentration than shallow and deep depth samples. The high uranium concentration at this depth may be due to leaching through soil by heavy use of fertilisers in the agriculture lands and due to squanders discharged from factories or thermal power plants. Fertilisers may also contain very high level of uranium as phosphate fertilisers are prepared from phosphate rock which are enriched with uranium. Thus, urbanisation and wide spread use pesticides/fertilisers are certainly responsible for the increase in uranium concentration.

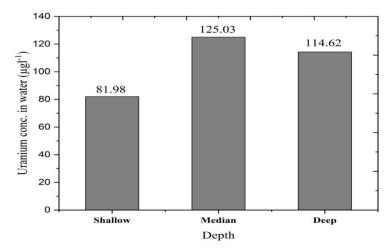


Figure 6.5: Comparison of uranium concentration in underground water taken from different depths in Barnala district

For **Moga district**, Figure 6.6 shows the average uranium concentration in underground water samples collected from varying depth shallow (having depth <50 m), median (having depth 50m < depth <75m) and deep (having depth >75m). it has been found that the average uranium concentration in deep depth samples have higher concentration than shallow and median depth samples.

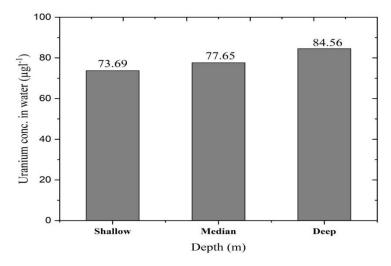


Figure 6.6: Comparison between uranium concentration in underground water taken from different depths in Moga district

The results observed for uranium distribution in present study are compared with those already reported by other researchers in literature for other areas (Table 6.3). The average value in the studied area is more than the 73.5 μ gl⁻¹ in South Western Punjab (Bathinda, Mansa, Ferozpur, Faridkot districts) (Bajwa et al. 2016) and lower than the 17.66 μ gl⁻¹ in Jalandhar district (Kumar M et al., 2017), 2.63 μ gl⁻¹ in Sri Nagar City (Nazir et al., 2020), 0.4 μ gl⁻¹ in Arunachal Pradesh (Salkia et al., 2021), 2.08 μ gl⁻¹ in Bihar (Richards et al., 2021), 22.09 μ gl⁻¹ in Haryana (Sar et al., 2017), 2.75 μ gl⁻¹ in Maharastra (Kale et al., 2018), 5.4 μ gl⁻¹ in Tamil Nadu (Thivya et al., 2014) and 3.03 μ gl⁻¹ in Telangana (Ganesh et al., 2020).

The LADD of uranium observed in the present study is comparatively higher than those reported for Korean groundwater (0.003 μ g kg⁻¹ d⁻¹) by Ye-shin et al. (2004), Jaduguda region in Jharkhand State, India (0.001-0.32 μ g kg⁻¹ d⁻¹) by Patra et al. (2013), Bagjata (0.14-0.70 μ g kg⁻¹ d⁻¹), Banduhurang (0.05-1.8 μ g kg⁻¹ d⁻¹) mining areas, Jharkhand, India by Giri et al. (2012), however, lower than those reported for western Haryana, India (0.02-18.8 μ g kg⁻¹ d⁻¹) by Singh et al. (2014), Odeda Area, Ogun State, Nigeria (0.56-7.47 μ g kg⁻¹ d⁻¹) by Amakom et al. (2010), Bathinda district of Punjab State, India (0.04-43.11 μ g kg⁻¹ d⁻¹) by Singh et al. (2013), Mansa district of Punjab State, India (0.10-43.66 μ g kg⁻¹ d⁻¹) by Kumar et al. (2011) and Punjab State, India (0.15-48 μ g kg⁻¹ d⁻¹) by Kumar et al. (2011).

The annual effective dose to infants is compared with other similar studies in different areas, it has been observed that the dose for infants in present study

243 µSvy⁻¹ for (0-6 months), 277 µSvy⁻¹ for (7-12 months) of Barnala district and 158 μ Svy⁻¹ for (0-6 months), 181 μ Svy⁻¹ for (7-12 months) for Moga district) have higher values than 126 µSvy⁻¹ for (0-6 months), 144 µSvy⁻¹ for (7-12 months) in Sri Ganganagar, 110 μ Svy⁻¹ for (0-6 months), 126 μ Svy⁻¹ for (7-12 months) in Hanumangarh, 88 µSvy⁻¹ for (0-6 months), 101 µSvy⁻¹ for (7-12 months) in Churu, 46 μ Svy⁻¹ for (0-6 months), 52 μ Svy⁻¹ for (7-12 months) in Sikar districts of Northern Rajasthan as reported by Duggal et al., 2020; 0.8 µSvy⁻¹ (for 0-6 months), 0.9 µSvy⁻¹ (for 7-12 months) in Sri Nagar, Northwest Himalaya as reported by Nazir et al., 2020; $25.14 \,\mu \text{Svy}^{-1}$ (for 1 year) in Jalandhar district of Punjab as reported by Manish et al., 2017; 18.80 μ Svy⁻¹ (for 0-6 months), 21.48 μ Svy⁻¹ (for 7-12 months) for pre-monsoon and 19.29 µSvy⁻¹ (for 0-6 months), 22.02 µSvy⁻¹ (for 7-12 months) for post-monsoon in Amritsar; 9.35 µSvy⁻¹ (for 0-6 months), 10.68 µSvy⁻¹ (for 7-12 months) for pre-monsoon and 10.86 µSvy⁻¹ (for 0-6 months), 12.41 µSvy⁻¹ (for 7-12 months) for post-monsoon in Gurdaspur; 6.69 µSvy⁻¹ (for 0-6 months), 7.64 µSvy⁻¹ (for 7-12 months) for pre-monsoon and 7.49 μ Svy⁻¹ (for 0-6 months), 8.56 μ Svy⁻¹ (for 7-12 months) for post-monsoon in Pathankot districts of Punjab as reported by Sharma et al., 2018.

6.4.2 Results of Biokinetic Modelling

From the measured concentration of uranium in water samples, the retention, excretion and dose received to various organs has been calculated by using biokinetic model. The biokinetic model provides the pathway of different radionuclides inside the body and allows us to calculate the retention in different organs and tissues. The detailed data of retention, excretion of uranium in different body organs have been calculated using hair compartment model, considering the chronic intake of uranium over a period of 60 years via drinking water pathway.

6.4.2.1 Radiological Contamination/ Retention of uranium in various compartments of human body. Table 6.4 represents the contamination/retention of uranium in GI track, skeleton, blood, kidney, liver, urinary bladder as explained below:

a) In GI Tract. Ingestion is the main pathway of the exposure of the natural radionuclides in water to the general population and the GI tract is the path through which the ingested uranium enters the bloodstream. Small intestine is the main compartment in which the absorption takes place. The average concentration of uranium in the GI tract comes out to be 271.75 μ g and 179.26 μ g for the habitants of Barnala and Moga district respectively. High concentration of uranium may lead to high retention of uranium in different body organs.

b) In Blood. After ingestion, uranium rapidly appears in the blood stream and the studies available in the literature shows that the large proportion of the uranium is associated with the red blood cells (Fisenne and Perry, 1985). There is equilibrium between the uranyl– albumin complex and ionic uranyl hydrogen carbonate complex in the blood plasma (Moss et al., 1983). The average concentration of uranium that appears in blood plasma is 2.19 and 0.057 μ g for the habitants of Barnala and Moga district respectively. Uranium attaches to RBCs from the plasma and with a half time of around 1 day, it returns back to plasma (Leggett, 1994).

c) In Skeleton. In bones, the movement of the uranyl ion is similar to that of the calcium ions. The uranyl ions exchange with the calcium ions at the bone surfaces but these ions do not take part in the crystal formation. The average value of the uranium deposited on the Cortical and Trabecular bone surface is 0.82, 1.02 μ g and 0.53, 0.67 μ g for the habitants of Barnala and Moga districts respectively. On the other hand, the uranium concentration in the non-exchangeable cortical and Trabecular bone volume is 143.78, 38.95 μ g and 95.26, 25.61 μ g for the habitants of Barnala and Moga districts respectively. In the ICRP's biokinetic model for uranium, it is assumed that the removal of uranium from the non-exchangeable bone volume is very low and it is also clear from the data that the amount of uranium in the non-exchangeable cortical and Trabecular bone surfaces.

d) **In Liver.** In the biokinetic model, the compartment of liver is divided into two parts liver 1 and liver 2. The retention half life time of liver 1 and liver 2 is 7 days and 10 years, respectively. Liver 1 receives uranium from plasma and then passes it onto liver 2. The average amount of uranium retained in the Liver compartment is found to be 64.72 and 42.42 µg for the residents of Barnala and Moga district respectively.

e) In Kidney. According to the retention time, this compartment is also divided into two parts kidney 1 and kidney 2. The amount of the uranium filtered by the glomerulus deposits in the kidney 1 and the filtered content goes to the urinary bladder and urine. Uranium enters the kidneys from kidney 2 and it returns the uranium back to plasma rather than to urine. The removal half-life of the other kidney tissues is around 5 years, which results in higher amounts of uranium in kidneys. The average retention of uranium in kidneys is found to be 1.92, 1.26 μ g and kidney concentration of 0.006, 0.004 μ gg-1 for the residents of Barnala and Moga districts respectively of kidney tissues.

f) **In Urinary Bladder.** The uranium enters the urinary bladder from the kidney 1 after filtration and directly from the plasma also. The average value of retention of uranium in the urinary bladder is 0.031 and $1.46 \mu g$ for the residents of Barnala and Moga district respectively.

6.4.2.2 Removal/Excretion of Uranium from Human Body through Excretory Paths: Hair, Faeces and Urine. Table 6.4 also represents the removal/excretion of uranium through excretory paths. The excretion rate by hair channel shows a range of value from 0.15 to 1.26 μ gd⁻¹ with an average value of 0.6 μ gd⁻¹ and 0.18 to 0.73 μ gd⁻¹ with an average value of 0.39 μ g d⁻¹, the excretion rates by other traditional routes like faeces the amount of uranium excreted from the body per day lies from the range of 39.66 to 326.1 μ gd⁻¹ with an average value of 155 μ gd⁻¹ and from 46.48 to 188.10 μ gd⁻¹ with an average value of 101 μ gd⁻¹, and from urine the amount of uranium excreted from the body per day lies from the range of 0.083 to 1.62 μ gd⁻¹ with an average value of 0.336 and from 0.098 to 1.73 μ gd⁻¹ with an average value of 0.229 μ gd⁻¹ for the residents of Barnala and Moga district, respectively. From the above it has been observed that the excretion rate of uranium is much greater through large intestine pathway (faeces) than through urine or hair.

6.4.2.3 Doses to Various Organs of Human Body. Like other heavy metals, uranium has inimical effects on the human body, especially on some internal human body organs like kidneys. These elements with a long biological half-life are noxious at very low

doses. Because of low specific radioactivity of natural uranium, its radiological effects are low. The radiological effects of uranium may dominate over its chemical toxicity in the case of exposure to enriched uranium or exposure through inhalation of insoluble uranium compounds if they remain in the body for a longer period. Table 6.5 shows the doses calculated according to dose conversion factors provided by the ICRP (1995) from single uptake and it is not based on distribution of uranium in organs.

a) Bone Surfaces. The radiosensitive cells in the bone are endosteal and epithelial cells on the bone surfaces. These cells are present on all bone surfaces and are between distances of 10 mm from the bone surface. The primary effects of radiation on these cells are cancer but the bones are less sensitive to the radiological effects than other organs. The dose to the bone surface is the highest compared to any other organ or tissue. This dose varies from 18.83 to 155 μ Sv with an average value of 73.62 μ Sv and from 22.07 to 89.27 μ Sv with an average value of 48.23 μ Sv for the residents of Barnala and Moga districts, respectively.

b) Red Bone Marrow. The red bone marrow consists of haemopoietic and fat cells. In the case of radiation protection, attention must be paid to the red bone marrow because the irradiation of it is clearly linked with the induction of leukemia. We have also observed that the red bone marrow receives a higher dose than many other organs. The value of the average dose received by the red bone marrow comes out to be 9.39 and 6.15 μ Sv for the residents of Barnala and Moga districts respectively.

c) Thyroid. The radiological effects may dominate in the case of exposure to the thyroid gland due to its sensitivity of induction of cancer from irradiation. The average dose received by the thyroid due to ingested uranium is 653.7 and 428.2 nSv for the residents of Barnala and Moga district respectively.

d) **Breast.** These are the one of the most radiosensitive tissues present in the human body. But in the case of exposure to the ingested uranium, its sensitivity is equivalent to that of the thyroid gland. The dose received by the breast of an average public adult has an average value of 653.7 and 428.2 nSv for the residents of Barnala and Moga district respectively.

e) Skin. Reddening of the skin is the major effect that occurs when skin is exposed to radiation. The average dose received by the skin of the public adult from exposure

of uranium in drinking water is 653.7 and 428.2 nSv for the residents of Barnala and Moga district, respectively.

f) **Oesophagus.** Oesophagus is one of the upper parts of the alimentary tract. The average dose acquired by the esophagus of the public adult is 653.7 and 428.2 nSv for the residents of Barnala and Moga district, respectively.

g) **Stomach and Colon.** Stomach and colon are very important organs of the GI tract of the human body. The stomach wall consists of an outer mucosa and inner submucosa, muscularis externa and serosa. The observed value of an average dose received by the stomach wall and colon is 665.6, 436.1 nSv and 962.8, 630.8 nSv, respectively for the residents of Barnala and Moga district respectively.

h) Liver. It is the largest organ of the human body. The dose received by the liver is also quite higher than that received by some other internal human body organs. The average dose received by the liver is 12.95 and 8.489 μ Sv for the residents of Barnala and Moga district, respectively.

i) **Bladder Wall.** The human bladder wall consists of detrusor muscle fibers. The bladder collects the urine excreted by the kidneys. The average dose received by the bladder wall of the public adult of the studied area is 657.9 and 431 nSv for the residents of Barnala and Moga district respectively.

For **Barnala district**, the annual effective ingestion dose to whole body varies from 904.8 nSv to 7.45 μ Sv with an average of 3.53 μ Sv which is very less than the recommended limit of 100 μ Sv (WHO, 2004). Figure 6.7 depicts the distribution of effective pecentage dose to organs/tissues of paramount importance. Bone surfaces bear the maximum share of dose (63.5%) due to uranium and its daughters, liver (11.17%), stomach wall (8.1%).

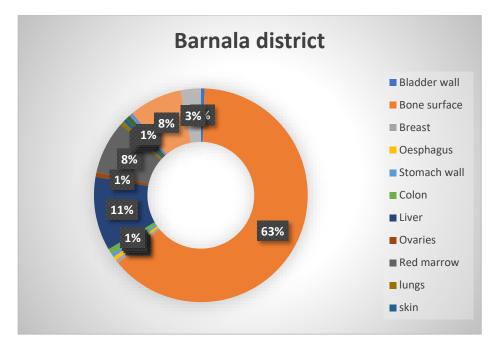


Figure 6.7: Dose percentage to various organs using biokinetic model in Barnala district

For **Moga district**, the annual effective ingestion dose to whole body varies from 1.06 μ Sv to 4.28 μ Sv with an average of 2.31 μ Sv which is very less than the recommended limit of 100 μ Sv (WHO, 2004). Figure 6.8 depicts the distribution of effective percentage dose to organs/tissues of paramount importance. Bone surfaces bear the maximum share of dose (62.69%) due to uranium and its daughters, liver (12.32%), stomach wall (7.99%).

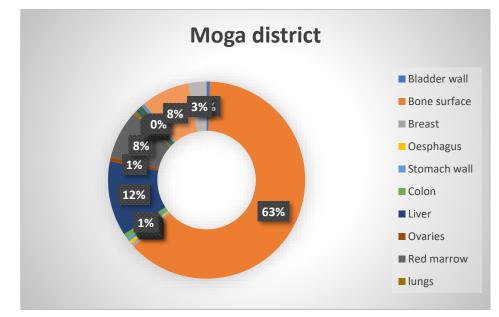


Figure 6.8: Dose percentage to various organs using biokinetic model in Moga district

Hence, Biokinetic models facilitate the absorption, retention and elimination of uranium by the human body. Organ-specific uranium retention and doses enables to identify the target organs/tissues. In Hair Compartment model as the reference as Uranium burden from protracted ingestion of ground water for 60 years is greatest in cortical bone volume followed by soft tissues. Bone surfaces and kidneys are the major recipients of dose due to uranium ingestion. The excretion rates remain fairly constant over the years via urine, hair and feces.

6.4.3 Physicochemical Factors

The data of various physiochemical properties of groundwater and surface water samples in Barnala and Moga districts of Punjab is reported in Table 6.6.

6.4.3.1 pH Value. pH of an aqueous solution is calculated as the negative logarithm of hydrogen ion concentration. It determines the reactive characteristics of water. It is an operational water-quality parameter and is not much of health concern. In all the analysed 200 water samples pH value in a narrow range from 6.6 to 8.1 with an average value of 7.5 and from 7.3 to 8.2 with an average value of 7.8 for Barnala and Moga districts, respectively. The pH values indicated that most of the samples of the studied region were alkaline. The pH value of all the samples lies in permissible range of 6.5-8.5 by Bureau of Indian Standards (BIS, 2012) and WHO, 2011.

For **Barnala district**, the measured pH value of underground water samples lies in the range of 6.6 to 8 with an average value of 7.4 and for surface water samples it lies from 6.7 to 8.1 with an average value of 7.5. It has been observed that the pH value is almost same in underground and surface water samples. Figure 6.9a shows 17% underground water samples have pH less than 7 and 83% samples have pH value greater than 7. Figure 6.9b shows the 4% of the surface water samples have pH value less than 7 and 96% samples have pH value greater than 7.

For **Moga district**, the measured pH value of underground water samples lies in the range of 7.3 to 8.2 with an average value of 7.8 and for surface water samples it lies from 7.5 to 8.2 with an average value of 7.8. It has been observed that the pH value is almost same in underground and surface water samples. Figure 6.9a shows that the 100 % samples have pH value greater than 7. Figure 6.9b shows that 100% surface

water samples have pH value greater than 7. Therefore water in most of the studied area is alkaline.

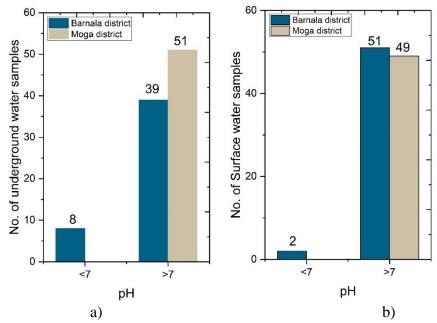
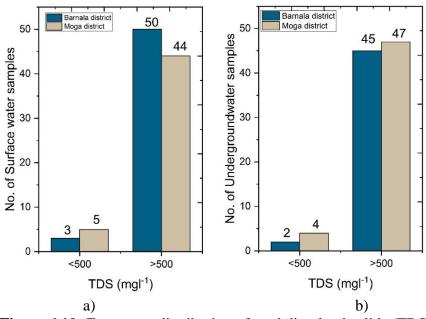


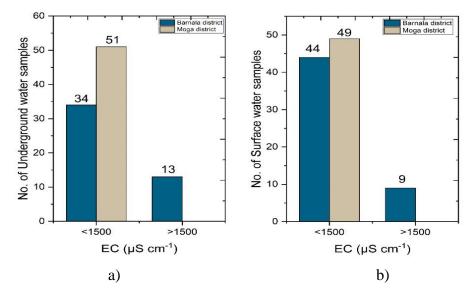
Figure 6.9: Frequency distribution of pH value a) underground water b) surface water

6.4.3.2 Total Dissolved Solids (TDS). TDS comprises all inorganic and organic content in a liquid in molecular, ionized or micro-granular suspended form. Although it is not a primary pollutant, it hints at the aesthetic characteristics of drinking water. It may affect acceptability of drinking water to a significant extent. The overall TDS value fluctuated between 316 to 1963 mgl⁻¹ with mean value of 1089 mgl⁻¹ and 261 to 1443 mgl⁻¹ with an average value of 787 mgl⁻¹ for Barnala and Moga districts, respectively. Out of the total 200 samples, 93% samples have higher TDS value than the secondary maximum contaminant level of 500 mgl⁻¹ set by USEPA (2011) and BIS (2012) standard. Moreover, 82.5% the samples have higher TDS value than the permissible limit of 600 mgl⁻¹ specified by WHO, 2011. Higher TDS value shows that the water may not be fit for drinking.

For **Barnala district**, the measured TDS value of underground water samples lies in the range of 415 to 1963 mgl⁻¹ with an average value of 1146.98 mgl⁻¹ and for surface water samples it lies from 316 to 1942 mgl⁻¹ with an average value of 1037.4 mgl⁻¹. It has been observed that the TDS value in underground water samples have higher values than surface water samples. Figure 6.10a shows the Total Dissolved Solids (TDS) of 6% surface water samples lies in the range of 0-500 mgl⁻¹ and 94% samples have higher TDS values than the recommended value of 500 mgl⁻¹. Figure 6.10b shows the 4% of the underground water samples lies in the range of 0-500 mgl⁻¹ and 96% samples have higher TDS values than the recommended value of 500 mgl⁻¹.

For **Moga district**, the measured TDS value of underground water samples lies in the range of 454 to 1443 mgl⁻¹ with an average value of 864.35 mgl⁻¹ and for surface water samples it lies from 261 to 1338 mgl⁻¹with an average value of 705.67 mgl⁻¹. It has been observed that the TDS value in underground water samples have higher values than surface water samples. Figure 6.10a shows the TDS of 10% surface water samples lies in the range of 0-500 mgl⁻¹ and 90% samples have higher TDS values than the recommended value of 500 mgl⁻¹. Figure 6.10b shows that 100% underground water samples have TDS value higher than the recommended value of 500 mgl⁻¹.




Figure 6.10: Frequency distribution of total dissolved solids (TDS) a) surface water b) underground water samples

6.4.3.3 Electrical Conductivity (EC). Electrical conductivity quantifies the concentration of ionizable solutes present in aqueous sample (ISO, 1985). The investigated samples have low mineralization with electrical conductivity varying from 454 to 2068 μ Scm⁻¹ with an arithmetic mean of 1154.3 μ Scm⁻¹ at 35°C temperature and from 410 to 1433 μ Scm⁻¹ with an arithmetic mean of 850.25 μ Scm⁻¹ in the Barnala and Moga districts, respectively. The electrical conductivity of 41.5% samples has higher value than 1000 μ Scm⁻¹ as per regulations on drinking water hygiene in India (Water

Act, 1956) and 22% of samples have higher electrical conductivity than 1500 μ Scm⁻¹ as recommended by World Health Organization (WHO, 2004).

For **Barnala district**, the measured electrical conductivity (EC) value of underground water samples lies in the range of 454 to 2068 μ Scm⁻¹ with an average value of 1228.87 μ Scm⁻¹ and for surface water samples it lies from 491 to 1974 μ Scm⁻¹ with an average value of 1088.32 μ S cm⁻¹. It has been observed that the electrical conductivity in underground water samples have higher values than surface water samples. Figure 6.11a shows the electrical conductivity (EC) of 72% underground water samples lies in the range of 0-1500 μ Scm⁻¹ and 28% samples have higher electrical conductivity values than the recommended value of 1500 μ Scm⁻¹. Figure 6.11b shows the 83% of the surface water samples lies in the range of 0-1500 μ Scm⁻¹.

For **Moga district**, the measured EC value of underground water samples lies in the range of 436 to 1433 μ Scm⁻¹ with an average value of 910.35 μ Scm⁻¹ and for surface water samples it lies from 410 to 1216 μ Scm⁻¹ with an average value of 787.69 μ Scm⁻¹. It has been observed that the electrical conductivity in underground water samples have higher values than surface water samples. Figure 6.11a shows the electrical conductivity (EC) of 100% underground water samples lies in the range of 0-1500 μ Scm⁻¹. Figure 6.11b shows that the electrical conductivity of 100% surface water samples lies in the range of 0-1500 μ Scm⁻¹.

Figure 6.11: Frequency distribution of electrical conductivity (EC) a) underground water b) surface water samples

Correlation between Uranium Concentration in Water with Physicochemical Parameters:

In general, the rock porosity and permeability control the behaviour of groundwater. For example, igneous rocks, such as granite, have high permeability, resulting from fractures in the rocks that permit faster flow relative to, for example, shale. The general properties of uranium, thorium, and polonium are metallic while that of radium is alkaline and radon is a gaseous element. Soluble uranium complexes, e.g. uranyl, are readily produced in oxidizing environments, whereas in reducing groundwater environments uranium, and especially the uranyl ion, is readily precipitated or adsorbed on organic compounds. Therefore, in the present investigation, a correlation between uranium concentration and physicochemical parameters like pH, EC and TDS has been established.

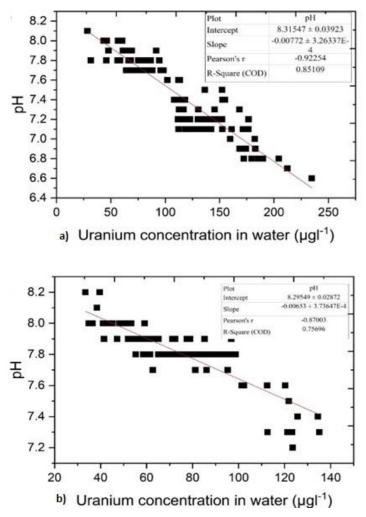
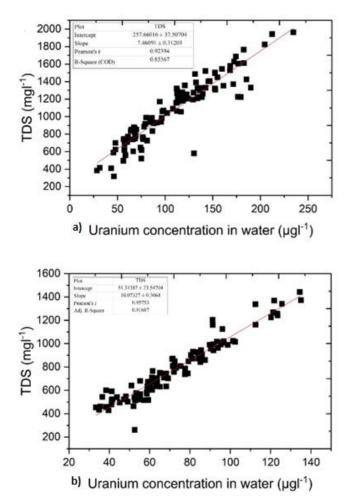



Figure 6.12: Correlation of uranium concentration with pH in water in a) Barnala district b) Moga district

The uranium mobility is controlled by pH and same has been observed in the correlation between uranium and pH of water samples that is r square value of 0.8 for Barnala district and r square value of 0.7 for Moga district, respectively (Figure 6.12). Figure 6.13 shows the positive correlation between uranium concentration and Total Dissolved Solids (TDS) in water with r square value of 0.8 for Barnala district and r square value of 0.9 for Moga district, respectively.

Figure 6.13: Correlation of uranium concentration with total dissolved solids (TDS) in water in a) Barnala district b) Moga district

Figure 6.14 shows the positive correlation between uranium concentration and electrical conductivity (EC) with r square value of 0.9 for both Barnala and Moga districts, respectively.

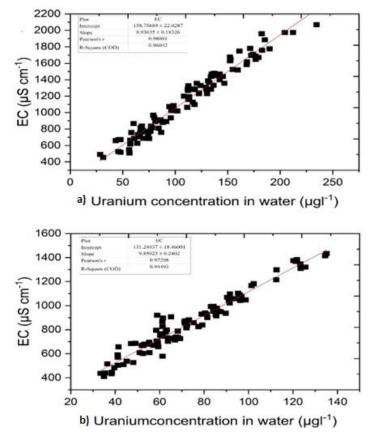


Figure 6.14: Correlation of uranium concentration with electrical conductivity (EC) in water in a) Barnala district b) Moga district

6.5 CONCLUSION

- Out of 200 samples, 99.5% of water samples have higher uranium concentration in water than the safe limit of 30 µgl⁻¹ as recommended by WHO (2011), 30 µgl⁻¹ by USEPA (2011) and 79% of samples have higher value than 60 µgl⁻¹ recommended by AERB (2004).
- Higher uranium concentration may be due to geology, anthropogenic activities and use of phosphate fertilizers in huge quantity for agriculture purposes.
- The calculated hazard quotient in 98% of samples is higher than one hence these areas have increased probability of kidney and lung diseases.
- From the biokinetic modelling, it has been observed that highest dose received to bone surface out of the all organs in the studied area.
- pH value of all the samples lies in permissible range of 6.5-8.5 by Bureau of Indian Standards (BIS, 2012) and WHO, 2011 and the most of the water samples is alkaline.

- Out of 200 samples, 93% samples have higher TDS value than the secondary maximum contaminant level of 500 mgl⁻¹ set by USEPA (2011) and BIS (2012) standard. Moreover, 82.5% the samples have higher TDS value than the permissible limit of 600 mgl⁻¹ specified by WHO, 2011 and hence may not be fit for drinking.
- The electrical conductivity of 41.5% samples has higher value than 1000 μ Scm⁻¹ as per regulations on drinking water hygiene in India (Water Act, 1956) and 22% of samples have higher electrical conductivity than1500 μ Scm⁻¹ as recommended by World Health Organization (WHO, 2004).
- The total dissolved solids and electrical conductivity have higher values in underground water samples than surface water.
- A positive correlation has been observed between uranium concentration with pH, TDS and EC.
- As concentration of uranium in water is much higher so it may be cause of serious health concern in the studied area and to be explored further.

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
				Barnala district				
1		UG	56.2	1.42	8.18	12.52	1.61	1.61
2	Dhanola	SW	130.4	3.29	18.97	29.05	3.73	3.73
3	Dhanota	UG	171.5	4.32	24.96	38.21	4.90	4.90
4	-	SW	74.2	1.87	10.80	16.53	2.12	2.12
5		UG	112.3	2.83	16.34	25.02	3.21	3.21
6	Bhadur	UG	95.8	2.41	13.94	21.34	2.74	2.74
7	Diladul	SW	75.1	1.89	10.93	16.73	2.15	2.15
8		SW	77	1.94	11.20	17.15	2.20	2.20
9		SW	176.5	4.45	25.68	39.32	5.04	5.04
10	Nainewal	UG	81.2	2.05	11.82	18.09	2.32	2.32
11		UG	189.9	4.79	27.63	42.31	5.43	5.43
12	1	SW	96.4	2.43	14.03	21.48	2.75	2.75
13	Jangiana	SW	161.2	4.06	23.46	35.91	4.61	4.61

Table: 6.1 Uranium concentration, cancer morbidity, mortality, lifetime daily average dose, hazard quotient in studied area

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
14		UG	185.5	4.67	26.99	41.32	5.30	5.30
15		UG	112.6	2.84	16.38	25.08	3.22	3.22
16		SW	108.3	2.73	15.76	24.13	3.09	3.09
17		SW	102.1	2.57	14.86	22.75	2.92	2.92
18	Channa	UG	58.4	1.47	8.50	13.01	1.67	1.67
19	Chaima	UG	136.4	3.44	19.85	30.39	3.90	3.90
20		SW	69.8	1.76	10.16	15.55	1.99	1.99
21		SW	64	1.61	9.31	14.26	1.83	1.83
22	Tana	UG	152.7	3.85	22.22	34.02	4.36	4.36
23	Тара	SW	131.36	3.31	19.11	29.26	3.75	3.75
24		SW	120.6	3.04	17.55	26.87	3.45	3.45
25		UG	85.9	2.16	12.50	19.14	2.45	2.45
26	– Mehta	SW	64.8	1.63	9.43	14.44	1.85	1.85
27		UG	31.5	0.79	4.58	7.02	0.90	0.90
28	1	SW	45.8	1.15	6.66	10.20	1.31	1.31

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
29		UG	122.7	3.09	17.85	27.33	3.51	3.51
30	Diwana	UG	146.9	3.70	21.38	32.73	4.20	4.20
31	Diwalla	SW	168.2	4.24	24.48	37.47	4.81	4.81
32		SW	113.4	2.86	16.50	25.26	3.24	3.24
33		SW	75.2	1.90	10.94	16.75	2.15	2.15
34	Dhurkot	SW	137.3	3.46	19.98	30.59	3.92	3.92
35	Difurkot	UG	145.5	3.67	21.17	32.41	4.16	4.16
36		UG	111.6	2.81	16.24	24.86	3.19	3.19
37		UG	122.7	3.09	17.85	27.33	3.51	3.51
38	Draj	SW	113.2	2.85	16.47	25.22	3.23	3.23
39		SW	68.1	1.72	9.91	15.17	1.95	1.95
40		UG	77.9	1.96	11.34	17.35	2.23	2.23
41		SW	129.9	3.27	18.90	28.94	3.71	3.71
42	Handiya	UG	142.3	3.59	20.71	31.70	4.07	4.07
43	-	SW	76.5	1.93	11.13	17.04	2.19	2.19

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
44		UG	84.2	2.12	12.25	18.76	2.41	2.41
45		SW	152.5	3.84	22.19	33.97	4.36	4.36
46	Mehal kalan	SW	68.3	1.72	9.94	15.22	1.95	1.95
47		UG	79.2	2.00	11.52	17.64	2.26	2.26
48		UG	179.4	4.52	26.10	39.97	5.13	5.13
49		UG	66.3	1.67	9.65	14.77	1.89	1.89
50	Sanahara	SW	172.4	4.34	25.09	38.41	4.93	4.93
51	Sanghere	SW	94.5	2.38	13.75	21.05	2.70	2.70
52		UG	112.7	2.84	16.40	25.11	3.22	3.22
53		SW	86.2	2.17	12.54	19.20	2.46	2.46
54	Waiid Ira	SW	142.5	3.59	20.74	31.75	4.07	4.07
55	_ Wajid ke _	UG	88.2	2.22	12.83	19.65	2.52	2.52
56		UG	168.5	4.25	24.52	37.54	4.81	4.81
57	Chuhan ke	SW	159.7	4.02	23.24	35.58	4.56	4.56
58		UG	174.2	4.39	25.35	38.81	4.98	4.98

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
59		UG	118.4	2.98	17.23	26.38	3.38	3.38
60		SW	97.1	2.45	14.13	21.63	2.77	2.77
61		UG	234.7	5.91	34.15	52.29	6.71	6.71
62	Bhadalwad	SW	212.3	5.35	30.89	47.30	6.07	6.07
63	Bliadalwad	UG	116.8	2.94	17.00	26.02	3.34	3.34
64	-	SW	134.9	3.40	19.63	30.05	3.85	3.85
65		SW	118.7	2.99	17.27	26.44	3.39	3.39
66	Sahira	UG	139.6	3.52	20.31	31.10	3.99	3.99
67	Sehjra	SW	98.4	2.48	14.32	21.92	2.81	2.81
68		UG	134.2	3.38	19.53	29.90	3.83	3.83
69		SW	118.2	2.98	17.20	26.33	3.38	3.38
70	Dormala	UG	182.4	4.60	26.54	40.63	5.21	5.21
71	_ Barnala	SW	28.5	0.72	4.15	6.35	0.81	0.81
72		UG	47.9	1.21	6.97	10.67	1.37	1.37
73	Dangarh	UG	138.5	3.49	20.15	30.85	3.96	3.96

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	НQ
74		SW	129.4	3.26	18.83	28.83	3.70	3.70
75		SW	47.9	1.21	6.97	10.67	1.37	1.37
76		UG	57.3	1.44	8.34	12.77	1.64	1.64
77		SW	68.1	1.72	9.91	15.17	1.95	1.95
78	Horizorh	UG	69.2	1.74	10.07	15.42	1.98	1.98
79	Harigarh	SW	57.4	1.45	8.35	12.79	1.64	1.64
80		SW	67.2	1.69	9.78	14.97	1.92	1.92
81		SW	60.4	1.52	8.79	13.46	1.73	1.73
82	A anal Kalan	SW	61.1	1.54	8.89	13.61	1.75	1.75
83	Aspal Kalan	SW	43.4	1.09	6.32	9.67	1.24	1.24
84	-	UG	66.5	1.68	9.68	14.81	1.90	1.90
85		UG	152.3	3.84	22.16	33.93	4.35	4.35
86	Bheni Jassa	SW	134.1	3.38	19.51	29.87	3.83	3.83
87		SW	46.2	1.16	6.72	10.29	1.32	1.32
88	1	UG	80.2	2.02	11.67	17.87	2.29	2.29

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	НQ
89		UG	182.8	4.61	26.60	40.72	5.22	5.22
90	– Kattu	SW	152.4	3.84	22.18	33.95	4.35	4.35
91		SW	112.1	2.82	16.31	24.97	3.20	3.20
92	-	UG	132.5	3.34	19.28	29.52	3.79	3.79
93		UG	91.6	2.31	13.33	20.41	2.62	2.62
94		SW	86.7	2.18	12.62	19.31	2.48	2.48
95	Attar Singhwala	SW	57.24	1.44	8.33	12.75	1.64	1.64
96	-	UG	56.57	1.43	8.23	12.60	1.62	1.62
97		UG	204.5	5.15	29.76	45.56	5.84	5.84
98		SW	176.7	4.45	25.71	39.36	5.05	5.05
99	Kurar	SW	124.2	3.13	18.07	27.67	3.55	3.55
100	-	UG	155	3.91	22.55	34.53	4.43	4.43
Minimu	Minimum		28.5	0.72	4.15	6.35	0.81	0.81
Maximu	Maximum		234.7	5.91	34.15	52.29	6.71	6.71
Average	Average		111.4127	2.81	16.21	24.82	3.18	3.18

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
Standard	l Deviation		45.3465	1.14	6.60	10.10	1.30	1.30
P5			47.815	1.20	6.95	10.65	1.36	1.36
P25			73.1	1.84	10.637	16.28	2.08	2.08
P50			112.45	2.83	16.3629	25.05	3.21	3.21
P75			142.35	3.58	20.7137	31.71	4.06	4.06
P95			182.935	4.60	26.6193	40.75	5.22	5.22
				Moga district	I			
101		SW	71.5	1.80	10.40	15.93	2.04	2.04
102	Maga	UG	61.2	1.54	8.91	13.63	1.75	1.75
103	Moga	SW	55.2	1.39	8.03	12.30	1.58	1.58
104	-	UG	93.9	2.37	13.66	20.92	2.68	2.68
105		SW	101.4	2.56	14.75	22.59	2.90	2.90
106	Marhi	UG	80.5	2.03	11.71	17.93	2.30	2.30
107		SW	58.6	1.48	8.53	13.05	1.67	1.67
108	-	UG	61.3	1.54	8.92	13.66	1.75	1.75

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
109		UG	91.6	2.31	13.33	20.41	2.62	2.62
110	Rode	SW	63.8	1.61	9.28	14.21	1.82	1.82
111	Kode	SW	57.2	1.44	8.32	12.74	1.63	1.63
112		UG	61.5	1.55	8.95	13.70	1.76	1.76
113		UG	73.1	1.84	10.64	16.28	2.09	2.09
114	khokhrana	SW	61.3	1.54	8.92	13.66	1.75	1.75
115	KIIOKIITAIIA	SW	49.1	1.24	7.14	10.94	1.40	1.40
116		UG	55.4	1.40	8.06	12.34	1.58	1.58
117		UG	102.4	2.58	14.90	22.81	2.93	2.93
118	Nathuwala	SW	78.9	1.99	11.48	17.58	2.25	2.25
119		SW	61.3	1.54	8.92	13.66	1.75	1.75
120		UG	52.8	1.33	7.68	11.76	1.51	1.51
121		UG	98.7	2.49	14.36	21.99	2.82	2.82
122	Smalsar	SW	77.5	1.95	11.28	17.27	2.21	2.21
123	-	SW	63.2	1.59	9.20	14.08	1.81	1.81

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
124		UG	65.1	1.64	9.47	14.50	1.86	1.86
125		UG	120.2	3.03	17.49	26.78	3.43	3.43
126	Charik	SW	112.5	2.84	16.37	25.06	3.21	3.21
127	Chark	SW	75.3	1.90	10.96	16.77	2.15	2.15
128		UG	77.6	1.96	11.29	17.29	2.22	2.22
129		UG	91.7	2.31	13.34	20.43	2.62	2.62
130	Smadh Bhai	SW	85.2	2.15	12.40	18.98	2.43	2.43
131	Smadn Bhai	SW	41.5	1.05	6.04	9.25	1.19	1.19
132		UG	35.5	0.89	5.17	7.91	1.01	1.01
133		UG	121.8	3.07	17.72	27.13	3.48	3.48
134	Nihal	SW	95.3	2.40	13.87	21.23	2.72	2.72
135	Singhwala	SW	58.5	1.47	8.51	13.03	1.67	1.67
136	-	UG	72.1	1.82	10.49	16.06	2.06	2.06
137	Himotouro	SW	84.2	2.12	12.25	18.76	2.41	2.41
138	Himatpura	UG	125.6	3.17	18.28	27.98	3.59	3.59

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
139		SW	69.2	1.74	10.07	15.42	1.98	1.98
140		UG	72.1	1.82	10.49	16.06	2.06	2.06
141		UG	79.2	2.00	11.52	17.64	2.26	2.26
142	Dharmkot	SW	53.3	1.34	7.76	11.87	1.52	1.52
143	Dharmkot	SW	41.2	1.04	6.00	9.18	1.18	1.18
144	-	UG	33.4	0.84	4.86	7.44	0.95	0.95
145		SW	96.3	2.43	14.01	21.45	2.75	2.75
146	Chottain kalan	UG	134.5	3.39	19.57	29.96	3.84	3.84
147		SW	61.5	1.55	8.95	13.70	1.76	1.76
148	-	UG	59.2	1.49	8.61	13.19	1.69	1.69
149		SW	87.5	2.21	12.73	19.49	2.50	2.50
150	Badhni	UG	135.1	3.40	19.66	30.10	3.86	3.86
151	Dadiiii	SW	68.2	1.72	9.92	15.19	1.95	1.95
152		UG	71.2	1.79	10.36	15.86	2.03	2.03
153	Moga	UG	91.3	2.30	13.29	20.34	2.61	2.61

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
154		SW	59.1	1.49	8.60	13.17	1.69	1.69
155		UG	38.44	0.97	5.59	8.56	1.10	1.10
156		SW	34.94	0.88	5.08	7.78	1.00	1.00
157		UG	84.1	2.12	12.24	18.74	2.40	2.40
158	Buttar	SW	67.2	1.69	9.78	14.97	1.92	1.92
159	Buttai	UG	47.2	1.19	6.87	10.52	1.35	1.35
160		SW	41.1	1.04	5.98	9.16	1.17	1.17
161		UG	96.8	2.44	14.09	21.56	2.77	2.77
162	Baddowal	SW	83.1	2.09	12.09	18.51	2.37	2.37
163	Baddowai	SW	52	1.31	7.57	11.58	1.49	1.49
164		UG	59.4	1.50	8.64	13.23	1.70	1.70
165		UG	89.8	2.26	13.07	20.01	2.57	2.57
166	Gill	SW	72.4	1.82	10.54	16.13	2.07	2.07
167		SW	48.2	1.21	7.01	10.74	1.38	1.38
168		UG	60.3	1.52	8.77	13.43	1.72	1.72

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
169		UG	123.3	3.11	17.94	27.47	3.52	3.52
170	Mehna	UG	91.2	2.30	13.27	20.32	2.61	2.61
171	Ivicinia	SW	61.2	1.54	8.91	13.63	1.75	1.75
172		UG	81.5	2.05	11.86	18.16	2.33	2.33
173		SW	96.1	2.42	13.98	21.41	2.75	2.75
174		UG		3.06	17.65	27.02	3.47	3.47
175	Ajitwal	UG	45.2	1.14	6.58	10.07	1.29	1.29
176		SW	38.4	0.97	5.59	8.55	1.10	1.10
177		UG	85.5	2.15	12.44	19.05	2.44	2.44
178	Dina	SW	72.3	1.82	10.52	16.11	2.07	2.07
179		SW	52.5	1.32	7.64	11.70	1.50	1.50
180		UG	63.8	1.61	9.28	14.21	1.82	1.82
181		UG	90.4	2.28	13.15	20.14	2.58	2.58
182	Rajaina	SW	71.5	1.80	10.40	15.93	2.04	2.04
183	-	SW	39.6	1.00	5.76	8.82	1.13	1.13

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	HQ
184		UG	43.8	1.10	6.37	9.76	1.25	1.25
185		SW	85.8	2.16	12.48	19.11	2.45	2.45
186	Kokri kokri	UG	112.6	2.84	16.38	25.08	3.22	3.22
187		UG	66.9	1.69	9.73	14.90	1.91	1.91
188		SW	52.6	1.33	7.65	11.72	1.50	1.50
189		UG	123.5	3.11	17.97	27.51	3.53	3.53
190	licomical	SW	86.1	2.17	12.53	19.18	2.46	2.46
191	karyal	UG	65.1	1.64	9.47	14.50	1.86	1.86
192		SW	58.9	1.48	8.57	13.12	1.68	1.68
193		UG	62.7	1.58	9.12	13.97	1.79	1.79
194	Babiha Bhaike	SW	55.3	1.39	8.05	12.32	1.58	1.58
195		SW	36.5	0.92	5.31	8.13	1.04	1.04
196	1	UG	41.2	1.04	6.00	9.18	1.18	1.18
197	Ludhaike	UG	93.4	2.35	13.59	20.81	2.67	2.67
198		SW	81.2	2.05	11.82	18.09	2.32	2.32

S. No.	Sample location	Sources of water	Uranium concentration in water (µg l ⁻¹)	Activity of uranium concentration (Bql ⁻¹)	ECR (Cancer mortality) × 10 ⁻⁵	ECR (Cancer morbidity) × 10 ⁻⁵	LADD (µgkg ⁻¹ day ⁻¹)	НQ
199		UG	68.2	1.72	9.92	15.19	1.95	1.95
200	-	SW	51	1.29	7.42	11.36	1.46	1.46
Minimur	n		33.4	0.84	4.86	7.44	0.95	0.95
Maximu	m		135.1	3.40	19.66	30.10	3.86	3.86
Average			72.99	1.84	10.62	16.26	2.09	2.09
Standard	Deviation		24.16	0.61	3.52	5.38	0.69	0.69
P5			38.43	0.96	5.59	8.5	1.09	1.09
P25			56.75	1.43	8.25	12.64	1.6	1.62
P50			68.7	1.73	9.9	15.3	1.9	1.9
P75			88.07	2.21	12.03	19.62	2.5	2.5
P95			121.87	3.07	17.73	27.15	3.4	3.48

District	Life stage group	Age group	Daily water	Dose conversion	Minimum	Maximum	MEAN
District		Age group	Intake (IGW)	Factor (DCF)	(µSvy ⁻¹)	(µSvy ⁻¹)	(µSvy ⁻¹)
	Infants	0-6 months	0.7	3.4× 10 ⁻⁷	62.55	513.40	243.24
	mants	7-12 months	0.8	3.4× 10 ⁻⁷	71.48	586.74	277.98
	Children	1-3year	1.3	1.2×10^{-7}	41.00	336.52	159.43
	Cinidicii	4-8 year	1.7	8× 10 ⁻⁸	35.74	293.37	138.99
		9-13 year	2.4	6.8×10 ⁻⁸	42.89	2112.28	166.79
	Males	14-18 year	3.3	6.7×10 ⁻⁸	58.11	476.95	225.96
Barnala		Adults	3.7	4.5×10 ⁻⁸	43.76	359.17	170.16
District		9-13 year	2.1	$6.8 imes 10^{-8}$	37.53	308.04	145.94
	Females	14-18 year	2.3	6.7×10 ⁻⁸	40.50	332.42	157.49
		Adults	2.7 4.5×10^{-8}		31.93	262.09	124.17
	Pregnancy	14-18 year	3	6.7×10 ⁻⁸	52.82	433.59	205.42
	T Tegnane y	19-50 year	3	4.5×10 ⁻⁸	35.48	291.22	137.97
	Lactation	14-18 year	3.8	6.7×10 ⁻⁸	66.91	549.21	260.20
	Lactation	19-50 year	3.8	4.5×10^{-8}	44.94	368.87	174.76
Moga	Infants	0-6 months	0.7	3.4× 10 ⁻⁷	70.36	295.36	158.97
District	Infulto	7-12 months	0.8	3.4× 10 ⁻⁷	80.42	337.55	181.68

Table 6.2 Annual effective ingestion dose due to uranium concentration in water in various age groups of studied area

District	I ifa ata an anana	A	Daily water	Dose conversion	Minimum	Maximum	MEAN
District	Life stage group	Age group	Intake (IGW)	Factor (DCF)	(µSvy ⁻¹)	(µSvy ⁻¹)	(µSvy ⁻¹)
	Children	1-3year	1.3	1.2×10^{-7}	56.94	193.60	104.20
	Cinicicii	4-8 year	1.7	8×10^{-8}	40.21	168.78	90.84
		9-13 year	2.4	6.8×10 ⁻⁸	48.25	202.53	109.01
	Males	14-18 year	3.3	6.7×10 ⁻⁸	65.37	274.39	147.68
		Adults	3.7	4.5×10^{-8}	49.23	206.63	111.21
		9-13 year	2.1	6.8×10 ⁻⁸	42.22	177.21	95.38
	Females	14-18 year	2.3	6.7× 10 ⁻⁸	45.56	191.24	102.93
		Adults	2.7	4.5×10^{-8}	35.92	150.78	81.16
	Dragnanov	14-18 year	3	6.7× 10 ⁻⁸	59.43	249.44	134.26
	Pregnancy	19-50 year	3	4.5×10^{-8}	39.91	167.54	90.17
	Lactation	14-18 year	3.8	6.7× 10 ⁻⁸	75.27	315.96	170.06
	Lactation	19-50 year	3.8	4.5×10 ⁻⁸	50.56	212.21	114.22

State	District/ City	Uranium concentration	Mean	References
	Bathinda, Mansa, Ferozpur, Faridkot	0.5- 571.7	73.5	Bajwa et al., 2017
	Faridkot	16-350		Pant et al., 2020
	Sangrur district	2.47-119.95		Virk et al., 2017
Punjab	Amritsar district	0.6-65.3		Sharma et al., 2019
	Jalandhar district	1.53-50.2	17.66	Kumar et al., 2017
	Bathinda and Mansa districts	0.13- 676		Saini et al., 2018
	Malwa	5.4-43.4		Mehra et al., 2018
Jammu & Kashmir	Sri Nagar City	0.10- 15.28	2.63	Nazir et al., 2020
Kerala	Palakkad, Thrissur, Kottayam, Idukki,	<0.5 -12.54 pre-monsoon		Shulumon at al. 2021
Kelala	Enrakulam	<0.5-5.93 post-monsoon		Shrlumon et al., 2021
Andhra Pradesh	Tummalapalle Uranium mining area, Kadapa	0-2	0.4	Kumer et al. 2020
Anuma Flauesh	district	0-2	0.4	Kumar et al., 2020
Arunachal Pradesh	Nalbari district	0.3-7.1 pre-monsoon	2.15	Salkia et al., 2021
Alunachai Fladesh	Naiban district	0.6-10.3 post-monsoon	2.75	Saikia et al., 2021
Bihar	273 districts	<1-80	2.08	Richards et al., 2020
Chattisgarh	Balod district	0.56-23.42		Sar et al., 2017
Gujrat	Dahod, Ahmedabad, Vadodra and Patna districts	31.9-56.7		Govt. of India, 2020

Table 6.3 Literature survey of uranium distribution in groundwater samples of different regions of India

State	District/ City	Uranium concentration	Mean	References
Haryana	Around Sohna Fault Line	0.10- 223.16	22.09	Chahal et al., 2019
Himachal Pradesh	Kulu	0.3-2.5		Rohit et al., 2018
Jharkhand	Jadugada, Uranium mining area	0.03-11.6		Patra et al., 2013
Karnatka	Kolar district	0.3-14442.9		Babu et al., 2008
Madhya Pradesh		0.0-233.91		Govt. of India, 2020
Maharastra	Arunagabad district	0.01-16.6	2.75	Kale et al., 2018
Rajasthan	Northern Rajasthan	2.5-171		Duggal et al., 2016
Tamil Nadu	Trivannamalai	0.2-25.8	5.4	Thivya et al., 2014
Telangana	Peddagattu and Seripally, Nalgo		3.03	Ganesh et al., 2020
Dunich	Barnala District	28.5 - 234.7	111.43	Dresont Study
Punjab	Moga District	33.4 - 135.1	73	Present Study

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion			1	Skelton	
S No	Sample location	concentrati on in water (µg l ⁻¹)	R Kidneys (µg)	C kidneys (µg g ⁻¹)	Plasma (µg)	Liver1+liver2 (µg)	ST+SI+ULI+LLI (µg)	Urinary Bladder (µg)	Urine (µg d ⁻¹)	Hair (µg d ⁻¹)	Faeces (µg d ⁻¹)	Cortical bone surface (µg)	Cortical bone volume (µg)	Trabecular bone surface (µg)	Trabecular bone volume non- ex) (µg)
						Barnala distr	ict								
1		56.2	0.968	0.00312	0.0373	32.651	137.97	0.1369	0.164	0.3027	78.21	0.412	73.31	0.518	19.69
2	Dhanola	130.4	2.246	0.00724	0.0867	75.759	320.1387	0.0317	0.381	0.70238	181.47	0.956	170.1	1.196	45.69
3	Dilanoia	171.5	2.9548	0.00953	0.114	99.63	421.0414	0.0412	0.5015	0.9237	238.66	1.2577	223.722	1.5741	60.103
4		74.2	1.278	0.00412	0.04935	43.10867	182.164	0.01808	0.21697	0.3996	103.26	0.544	96.794	0.68104	26.003
5		112.3	1.934	0.00624	0.0747	65.243	275.7023	0.027366	0.328	0.6048	156.28	0.82359	146.49	1.0307	39.356
6	Bhadur	95.8	1.6505	0.00532	0.0637	55.65	235.194	0.02334	0.28	0.516	133.31	0.7025	124.97	0.879	33.573
7	Diladul	75.1	1.2939	0.00417	0.0499	43.631	184.374	0.0183	0.219	0.4045	104.51	0.5507	97.968	0.689	26.31
8		77	1.3266	0.00428	0.0512	44.735	189.039	0.018764	0.2251	0.41475	107.156	0.5647	100.446	0.70674	26.985
9		176.5	3.041	0.00981	0.1174	102.5429	433.31	0.043	0.5161	0.95070	245.625	1.2944	230.244	1.62	61.855
10	Nainewal	81.2	1.399	0.00451	0.054	47.175	199.35	0.01978	0.2374	0.43629	113.001	0.5955	105.92	0.745	28.457
11	Ivaniewai	189.9	3.271	0.01055	0.1263	110.328	466.2143	0.046276	0.555	1.02287	264.27	1.392	247.72	1.743	66.55
12		96.4	1.6609	0.00535	0.06412	56.0064	236.667	0.023491	0.28189	0.5192	134.154	0.7069	125.75	0.8848	33.78
13		161.2	2.777	0.0089	0.107	93.653	395.754	0.0392	0.4713	0.86828	224.33	1.479	56.493	1.479	56.49
14	Jangiana	185.5	3.196	0.0103	0.1233	107.77	455.412	0.0452	0.54244	0.9991	258.15	1.36	241.98	1.702	65.009
15	Jangiana	112.6	1.94	0.00625	0.0748	65.418	276.4388	0.27439	0.3292	0.6065	156.699	0.8257	146.887	1.033	39.461
16		108.3	1.865	0.006	0.072	62.92007	265.88	0.0263	0.3166	0.58334	150.71	0.7942	141.277	0.994	37.95
17		102.1	1.759	0.00567	0.0679	59.318	250.66	0.0248	0.2985	0.5499	142.087	0.787	133.189	0.937	35.78153
18	Channe	58.4	1.00276	0.00323	0.03871	33.813	142.884	0.014182	0.17018	0.31348	80.9938	0.42683	75.922	0.53419	20.395
19	Channa	136.4	2.35011	0.00758	0.09073	79.245	334.8691	0.033239	0.3988	0.7347	189.82	1	177.934	1.25195	47.80216
20	┥╴┝	69.8	1.2026	0.00387	0.0464	40.5523	171.3626	0.017009	0.20411	0.37597	97.137	0.5119	91.054	0.64066	24.4618
21		64	1.10269	0.00355	0.04257	37.182	157.1233	0.015596	0.1871	0.34473	89.0654	0.46936	83.4881	0.587427	22.42917

Table 6.4 Biokinetic data of ingested uranium through drinking water

		Uranium	Kidı	neys	Blood	Liver	GI Tract	Bladder		Excretion			i	Skelton	
S No	Sample location	concentrati on in water (µg l ⁻¹)	R Kidneys (µg)	C kidneys (µg g ⁻¹)	Plasma (µg)	Liver1+liver2 (µg)	ST+SI+ULI+LLI (µg)	Urinary Bladder (µg)	Urine (µg d ⁻¹)	Hair (µg d ⁻¹)	Faeces (µg d ⁻¹)	Cortical bone surface (µg)	Cortical bone volume (µg)	Trabecular bone surface (μg)	Trabecular bone volume non- ex) (µg)
22	Тара	152.7	2.63095	0.00848	0.1015	88.71	374.88	0.037	0.44652	0.82250	212.504	1.1198	199.197	1.401565	53.51459
23		131.36	2.26	0.0073	0.0873	76.31	322.4956	0.032	0.3841	0.707	182.8	0.963	171.35	1.205	40.035
24		120.6	2.077	0.0067	0.08022	70.066	296.079	0.029	0.352	0.649	167.83	0.884	157.32	1.106	42.26
25		85.9	1.48	0.0047	210.889	49.9	210.88	0.02	0.251	0.462	119.54	0.629	112.05	0.788	30.1
26	Mehta	64.8	1.116	0.003	0.0431	37.64	159.08	0.0157	0.189	0.349	90.178	0.4753	84.53	0.5947	22.7
27	Menta	31.5	0.54	0.0017	0.0209	18.3	77.33	0.0076	0.092	0.169	43.83	0.231	41.09	0.289	11.039
28		45.8	0.789	0.00254	0.03	26.6	112.44	0.01116	0.1339	0.2466	63.73	0.335	59.74	0.42	16.05
29		122.7	2.11	0.0068	0.081	71.28	301.23	0.029	0.358	0.66	170.75	0.899	160.06	1.126	43
30	Diwana	146.9	2.53	0.0081	0.0977	85.34	360.64	0.035	0.429	0.791	204.43	1.077	191.63	1.348	51.48
31	Diwalia	168.2	2.89	0.0093	0.1118	97.7	412.93	0.04	0.491	0.905	234.07	1.233	219.41	1.54	58.94
32		113.4	1.95	0.0063	0.0754	65.88	278.4	0.027	0.331	0.61	157.81	0.831	147.93	1.0408	39.741
33		75.2	1.295	0.00418	0.05	43.689	184.619	0.01832	0.2199	0.405	104.651	0.5515	98.09	0.6902	26.354
34	Dhurkot	137.3	2.365	0.00763	0.09132	79.768	337.0786	0.03345	0.4014	0.73955	191.073	1.0069	179.108	1.2602	48.117
35	Difunct	145.5	2.5069	0.008	0.09678	84.532	357.21	0.03545	0.4254	0.78372	202.484	1.067	189.8	1.33547	50.991
36		111.6	1.922	0.0062	0.07423	64.837	273.983	0.027195	0.3263	0.6011	155.307	0.818	145.58	1.0243	39.11
37		122.7	2.114	0.00682	0.0816	71.286	301.234	0.0299	0.3588	0.6609	170.755	0.8998	160.0625	1.1262	43.0009
38	Draj	113.2	1.95	0.0062	0.07529	65.766	277.91	0.02758	0.331	0.6097	157.53	0.8301	147.669	1.039	39.671
39		68.1	1.173	0.00378	0.0452	39.564	167.189	0.0165	0.1991	0.3668	94.771	0.4994	88.836	0.625	23.866
40		77.9	1.3421	0.00433	0.0518	45.258	191.248	0.01898	0.2277	0.4196	108.409	0.5713	101.62	0.715	27.3
41		129.9	2.238	0.00722	0.0864	75.46	318.91	0.03165	0.3798	0.6996	180.77	0.9526	169.454	1.192	45.52
42	Handiya	142.3	2.451	0.0079	0.09465	82.673	349.35	0.0346	0.416	0.766	198.031	1.0436	185.63	1.3061	49.865
43	Handiya	76.5	1.318	0.00425	0.50886	44.44	187.81	0.0186	0.2237	0.412	106.46	0.561	99.794	0.7021	26.809
44		84.2	1.45	0.00468	0.056	48.91	206.71	0.0205	0.246	0.453	117.17	0.617	109.839	0.7728	29.508
45		152.5	2.627	0.00847	0.101	88.59	374.39	0.0371	0.445	0.8214	212.22	1.118	198.93	1.399	53.44

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion				Skelton	
S No	Sample location	concentrati on in water	R Kidneys	C kidneys	Plasma (µg)	Liver1+liver2 (µg)	ST+SI+ULI+LLI (µg)	Urinary Bladder	Urine (µg d ⁻¹)	Hair (µg d ⁻¹)	Faeces (µg d ⁻¹)	Cortical bone surface	Cortical bone volume	Trabecular bone surface	Trabecular bone volume non-
		(µg l ⁻¹)	(µg)	(µg g ⁻¹)	(#8)	(44)	(44)	(µg)	(µg u)	(µg u)	(#8 0)	(µg)	(µg)	(µg)	ex) (µg)
46	Mehal	68.3	1.176	0.0037	0.0454	39.68	167.68	0.0166	0.1997	0.3678	95.049	0.05009	89.097	0.626	23.93
47	kalan	79.2	1.364	0.0044	0.05268	46.01	194.44	0.0193	0.23159	0.4266	110.218	0.58	103.316	0.7269	27.756
48	Kalali	179.4	3.09	0.0099	0.1193	104.2277	440.436	0.0437	0.5246	0.96632	249.66	1.3156	234.027	1.646	62.871
49		66.3	1.142	0.0036	0.0441	38.518	162.769	0.01615	0.1938	0.357	92.26	0.4862	86.488	0.6085	23.235
50		172.4	2.97	0.00958	0.1146	100.16	423.2509	0.042	0.504	0.9286	239.92	1.264	224.89	1.582	60.418
51	Sanghere	94.5	1.628	0.00525	0.0628	54.9	232.0024	0.02302	0.276	0.509	131.51	0.693	123.275	0.867	33.118
52		112.7	1.941	0.00626	0.0749	65.476	276.68	0.02746	0.329	0.607	156.83	0.8265	147.017	1.0344	34.49
53		86.2	1.485	0.00479	0.0573	50.08	211.625	0.021	0.252	0.4643	119.96	0.6321	112.448	0.7911	30.209
54	Wajid ke	142.5	2.455	0.0079	0.0947	82.78	349.84	0.0347	0.4167	0.7675	198.3	1.045	185.89	1.307	49.93
55	Wajid Ke	88.2	1.519	0.0049	0.0586	51.24	216.53	0.0214	0.2579	0.475	122.74	0.646	115.05	0.809	30.912
56		168.5	2.903	0.0093	0.112	97.89	413.676	0.041	0.492	0.907	234.49	1.235	219.8	1.546	59.05
57		159.7	2.751	0.0088	0.1062	92.78	392.071	0.0389	0.466	0.8602	222.24	1.171	208.32	1.4658	55.967
58	Chuhan ke	174.2	3.001	0.0096	0.115	101.206	427.67	0.0424	0.509	0.9383	242.42	1.277	227.244	1.598	61.049
59		118.4	2.039	0.0065	0.0785	68.789	290.678	0.0288	0.346	0.6377	164.77	0.868	154.45	1.086	41.493
60		97.1	1.672	0.0053	0.064	56.413	238.38	0.02366	0.283	0.523	135.12	0.712	126.66	0.891	34.02
61		234.7	4.043	0.013	0.156	136.35	576.2	0.0571	0.686	1.264	326.61	1.721	306.166	2.154	82.251
62	Bhadalwad	212.3	3.57	0.0117	0.1412	123.34	521.207	0.0517	1.6208	1.143	295.44	1.556	276.94	1.948	74.4
63	Diluduiwud	116.8	2.012	0.00649	0.0776	67.85	286.75	0.0284	0.341	0.629	162.54	0.856	152.36	1.072	40.933
64		134.9	2.324	0.00749	0.0897	78.37	331.185	0.0328	0.394	0.7266	187.3	0.989	175.37	1.238	47.276
65		118.7	2.045	0.0065	0.0789	68.96	291.41	0.0289	0.347	0.639	165.18	0.87	154.84	1.089	41.599
66	Sehjra	139.6	2.405	0.0077	0.0928	81.104	342.72	0.034	0.408	0.751	194.27	1.023	182.1	1.281	48.92
67	Sehjra	98.4	1.695	0.0054	0.0654	57.168	241.577	0.0239	0.287	0.53	136.93	0.7216	128.36	0.903	34.48
68		134.2	2.312	0.00745	0.0892	77.96	329.467	0.0327	0.392	0.7228	186.759	0.9842	175.064	1.217	47.03
69	Barnala	118.2	2.036	0.00656	0.0786	68.671	290.187	0.0288	0.345	0.636	164.492	0.8668	154.192	1.084	41.423

		Uranium	Kidı	neys	Blood	Liver	GI Tract	Bladder		Excretion			i	Skelton	
s	Sample	concentrati									_	Cortical	Cortical	Trabecular	Trabecular
No	location	on in water	R Kidneys	C kidneys	Plasma (µg)	Liver1+liver2 (µg)	ST+SI+ULI+LLI (µg)	Urinary Bladder	Urine (µg d ⁻¹)	Hair (µg d ⁻¹)	Faeces (µg d ⁻¹)	bone surface	bone volume	bone surface	bone volume non-
		(µg l ⁻¹)	(µg)	(µg g ⁻¹)	(*8/	(18)	178/	(µg)			(19 4)	(μg)	(µg)	(μg)	ex) (µg)
70		182.4	3.142	0.01013	0.1213	105.97	447801	0.0444	0.533	0.9824	253.883	1.337	237.94	1.674	63.92
71		28.5	0.491	0.0015	0.0189	16.557	69.96	0.00694	0.0833	0.1535	39.661	0.209	37.178	0.261	9.987
72		47.9	0.825	0.00266	0.0318	27.828	117.59	0.0116	0.14	0.258	66.659	0.3512	62.485	0.439	16.78
73		138.5	2.386	0.00769	0.0921	80.465	340.024	0.0337	0.405	0.746	192.74	1.0157	180.673	1.271	48.538
74		129.4	2.229	0.00719	0.086	75.178	317.68	0.03153	0.378	0.697	180.079	0.948	168.8	1.187	45.34
75	Dangarh	47.9	0.825	0.00266	0.0318	27.828	117.59	0.0116	0.14	0.258	66.659	0.3512	62.485	0.439	16.78
76	Dungan	57.3	0.987	0.00318	0.0381	33.29	140.67	0.0139	0.1675	0.3086	79.74	0.4202	74.748	0.5259	20.081
77		68.1	1.173	0.00378	0.0452	39.564	167.189	0.0165	0.1991	0.3668	94.771	0.4994	88.836	0.625	23.866
78	Harigarh	69.2	1.192	0.00384	0.046	40.203	169.88	0.0168	0.202	0.3727	9630	0.507	90.271	0.635	24.25
79	mangam	57.4	0.988	0.0031	0.0381	33.348	140.92	0.01398	0.1678	0.309	79.88	0.4209	74.878	0.526	20.116
80		67.2	1.157	0.0037	0.0447	39.041	164.97	0.0163	0.196	0.361	93.51	0.492	87.66	0.616	25.55
81		60.4	1.04	0.00335	0.401	35.09	148.28	0.0147	0.176	0.325	84.055	0.442	78.79	0.554	21.167
82	Aspal	61.1	1.052	0.0033	0.0406	35.49	150.003	0.01488	0.178	0.329	85.02	0.448	79.705	0.56	21.41
83	Kalan	43.4	0.747	0.0024	0.0288	25.21	106.54	0.0105	0.126	0.233	60.397	0.318	56.615	0.398	15.209
84		66.5	1.145	0.0036	0.0442	38.63	163.26	0.0162	0.194	0.358	92.544	0.4877	86.749	0.6103	23.305
85		152.3	2.624	0.00846	0.1013	88.48	373.9	0.037	0.445	0.8203	211.94	1.116	198.67	1.397	53.37
86	Bheni Jassa	134.1	2.31	0.0074	0.089	77.9	329.22	0.0326	0.392	0.722	186.61	0.983	174.93	1.23	46.99
87	Difeiii Jussa	46.2	0.796	0.00256	0.0307	26.84	113.42	0.0112	0.135	0.248	64.29	0.338	60.26	0.424	16.19
88		80.2	1.38	0.004	0.053	46.59	196.89	0.0195	0.234	0.431	111.61	0.588	104.6	0.736	28.106
89		182.8	3.14	0.0101	0.121	106.2	448.78	0.044	0.534	0.984	254.39	1.34	238.46	1.67	64.06
90	Kattu	152.4	2.62	0.0084	0.1013	88.54	374.14	0.037	0.445	0.82	212.08	1.117	198.8	1.398	53.4
91	Kattu	112.1	1.931	0.0062	0.0745	65.12	275.21	0.0273	0.327	0.603	156.003	0.822	146.23	1.028	39.28
92		132.5	2.28	0.007	0.088	76.97	325.29	0.0322	0.387	0.713	184.39	0.971	172.84	1.216	46.435
93		91.6	1.57	0.00509	0.0609	53.21	224.88	0.022	0.267	0.493	127.47	0.671	119.49	0.84	32.101

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion				Skelton	
s	Sample	concentrati	R	С	Diagma	Liver1+liver2	ST+SI+ULI+LLI	Urinary	Urine	Hair	Faeces	Cortical bone	Cortical bone	Trabecular bone	Trabecular bone
No	location	on in water	Kidneys	kidneys	Plasma (µg)	μg)	51+51+0L1+LL1 (μg)	Bladder	(µg d ⁻¹)	(µg d ⁻¹)	(µg d ⁻¹)	surface	volume	surface	volume non-
		(µg l ⁻¹)	(µg)	(µg g ⁻¹)				(µg)				(µg)	(µg)	(µg)	ex) (µg)
94	Attar	86.7	1.49	0.004	0.0576	50.37	212.85	0.02112	0.253	0.467	120.65	0.635	113.1	0.795	30.38
95	Singhwala	57.24	0.986	0.00318	0.038	33.25	140.527	0.0139	0.167	0.308	79.65	0.419	74.66	0.525	20.06
96	Singhwala	56.57	0.974	0.00314	0.037	32.86	138.88	0.0137	0.165	0.304	78.72	0.414	73.79	0.519	19.82
97		204.5	3.52	0.0113	0.136	118.81	502.08	0.049	0.598	1.101	284.59	1.499	266.77	1.877	71.66
98		176.7	3.04	0.0098	0.117	102.65	433.8	0.043	0.516	0.951	245.9	1.29	230.5	1.62	61.92
99		124.2	2.139	0.0069	0.0826	72.15	304.991	0.0302	0.363	0.668	172.84	0.9108	162.01	1.139	43.52
100	Kurar	155	2.67	0.0086	0.103	90.05	380.53	0.037	0.453	0.834	215.705	1.136	202.19	1.422	54.32
Minim	um	28.500	0.491	0.002	0.019	16.557	69.960	0.007	0.083	0.154	39.661	0.050	37.178	0.261	9.987
Maxim	um	234.700	4.043	0.013	210.889	136.350	576.200	0.274	1.621	1.264	326.610	1.721	306.166	2.154	82.251
Averag	e	111.413	1.918	0.006	2.191	64.724	271.757	0.031	0.336	0.600	155.000	0.816	143.789	1.022	38.952
							Moga distri	ct							
101		71.5	1.23	0.0039	0.0475	41.54	175.53	0.0174	0.209	0.385	99.5	0.5224	93.27	0.656	25.05
102	Moga	61.2	1.05	0.003	0.04	35.55	150.24	0.0149	0.178	0.329	85.16	0.448	79.83	0.561	21.44
103	8	55.2	0.951	0.003	0.0367	32.07	135.51	0.0134	0.161	0.297	76.81	0.404	72.008	0.506	19.34
104		93.9	1.617	0.0052	0.062	54.5	230.52	0.022	0.274	0.505	130.67	0.688	122.49	0.861	32.9
105		101.4	1.74	0.005	0.0674	58.91	248.94	0.0247	0.296	0.546	141.11	0.743	132.27	0.93	35.53
106	Marhi	80.5	1.38	0.004	0.0535	46.76	197.63	0.0196	0.235	0.433	112.02	0.59	105.012	0.738	28.21
107		58.6	1.009	0.0032	0.0389	34.04	143.86	0.0142	0.171	0.315	81.55	0.429	76.44	0.537	20.53
108		61.3	1.056	0.003	0.0407	35.61	150.49	0.0149	0.179	0.33	85.3	0.449	79.96	0.562	21.48
109		91.6	1.57	0.00509	0.0609	53.21	224.88	0.022	0.267	0.493	127.47	0.671	119.49	0.84	32.101
110		63.8	1.099	0.0035	0.042	37.06	156.63	0.0155	0.186	0.343	88.78	0.467	83.22	0.58	22.35
111	Rode	57.2	0.98	0.003	0.038	33.23	140.42	0.0139	0.167	0.308	79.6	0.419	74.61	0.525	20.046
112		61.5	1.05	0.003	0.451	35.73	150.98	0.014	0.179	0.33	85.58	0.451	80.22	0.56	21.55
113	khokhrana	73.1	1.259	0.004	0.0486	42.46	179.46	0.0178	0.213	0.393	101.72	0.536	95.35	0.67	25.61

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion				Skelton	
S	Sample	concentrati	R	С	Plasma	Liver1+liver2	ST+SI+ULI+LLI	Urinary	Urine	Hair	Faeces	Cortical bone	Cortical bone	Trabecular bone	Trabecular bone
No	location	on in water (µg l ⁻¹)	Kidneys (µg)	kidneys (µg g ⁻¹)	(µg)	(µg)	(μg)	Bladder (µg)	(µg d ⁻¹)	(µg d ⁻¹)	(µg d ⁻¹)	surface	volume	surface	volume non-
		(1-8-)										(µg)	(µg)	(µg)	ex) (µg)
114		61.3	1.056	0.003	0.0407	35.61	150.49	0.0149	0.179	0.33	85.3	0.449	79.96	0.562	21.48
115		49.1	0.845	0.0027	0.0326	28.52	120.54	0.0119	0.143	0.264	68.32	0.36	64.05	0.45	17.2
116		55.4	0.954	0.003	0.0368	32.18	136	0.013	0.162	0.298	77.09	0.406	72.26	0.508	19.415
117		102.4	1.76	0.0056	0.068	59.49	251.39	0.0249	0.299	0.551	142.5	0.75	133.58	0.939	35.88
118	Nathuwala	78.9	1.35	0.004	0.052	45.83	193.7	0.019	0.23	0.424	109.8	0.578	102.92	0.724	27.65
119	i tuniu wulu	61.3	1.056	0.003	0.0407	35.61	150.49	0.0149	0.179	0.33	85.3	0.449	79.96	0.562	21.48
120		52.8	0.9	0.0029	0.035	30.67	129.62	0.0128	0.154	0.284	73.47	0.38	68.87	0.484	18.5
121		98.7	1.7	0.0054	0.065	57.34	242.31	0.024	0.288	0.531	137.35	0.723	128.75	0.905	34.589
122	Smalsar	77.5	1.335	0.0043	0.0515	45.02	190.266	0.0188	0.226	0.417	107.85	0.568	101.09	0.711	27.16
123	Sinaisai	63.2	1.088	0.0035	0.042	36.71	155.15	0.0154	0.184	0.34	87.95	0.463	82.44	0.58	22.14
124		65.1	1.21	0.0036	0.0433	37.82	159.82	0.0158	0.19	0.3506	90.59	0.477	84.92	0.597	22.81
125		120.2	2.07	0.0066	0.0799	69.83	295.09	0.029	0.351	0.647	167.27	0.881	156.8	1.103	42.12
126	Charik	112.5	1.938	0.0062	0.0748	65.36	276.19	0.0274	0.328	0.605	156.56	0.825	146.75	1.032	39.426
127	Churk	75.3	1.297	0.004	0.05	43.74	184.86	0.0183	0.2201	0.405	104.79	0.552	98.22	0.691	26.38
128		77.6	1.33	0.0043	0.0516	45.084	190.51	0.01189	0.226	0.417	107.99	0.569	101.22	0.712	27.19
129		91.7	1.579	0.00509	0.0609	53.27	225.128	0.0223	0.268	0.493	127.61	0.672	119.62	0.841	32.13
130	Smadh	85.2	1.467	0.00473	0.0566	49.49	209.17	0.02076	0.249	0.4589	118.56	0.624	111.143	0.782	29.85
131	Bhai	41.5	0.715	0.0023	0.0276	24.11	101.884	0.0101	0.1213	0.2235	57.753	0.304	54.136	0.3809	14.54
132		35.5	0.6116	0.00197	0.0236	20.624	87.154	0.00865	0.1038	0.1912	49.403	0.2603	46.309	0.3258	12.44
133		121.8	2.098	0.00677	0.081	70.763	299.025	0.00865	0.356	0.656	169.5	0.893	158.88	1.117	42.68
134	Nihal	95.3	1.641	0.00529	0.0633	55.367	233.966	0.02322	0.278	0.5133	136.624	0.698	124.31	0.874	33.398
135	Singhwala	58.5	1.007	0.00325	0.0389	33.98	143.62	0.0142	0.171	0.315	81.411	0.429	76.31	0.536	20.501
136		72.1	1.242	0.004	0.0479	41.888	177.009	0.01757	0.2108	0.3883	100.337	0.528	94.054	0.6617	25.267
137	Himatpura	84.2	1.45	0.00468	0.056	48.91	206.71	0.0205	0.246	0.453	117.17	0.617	109.839	0.7728	29.508

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion				Skelton	
s	Sample	concentrati	R	С	ā			Urinary		Hair	Faeces	Cortical bone	Cortical bone	Trabecular bone	Trabecular bone
No	location	on in water (µg l ⁻¹)	Kidneys (µg)	kidneys (µg g ⁻¹)	Plasma (µg)	Liver1+liver2 (µg)	ST+SI+ULI+LLI (µg)	Bladder (µg)	Urine (µg d ⁻¹)	(µg d ⁻¹)	(µg d ⁻¹)	surface	volume	surface	volume non-
												(µg)	(µg)	(µg)	ex) (µg)
138		125.6	2.164	0.00698	0.0835	72.97	308.354	0.0306	0.367	0.676	174.79	0.921	163.845	1.152	44.017
139		69.2	1.192	0.00384	0.046	40.203	169.88	0.0168	0.202	0.3727	9630	0.507	90.271	0.635	24.25
140		72.1	1.242	0.004	0.0479	41.888	177.009	0.01757	0.2108	0.3883	100.337	0.528	94.054	0.6617	25.267
141		79.2	1.364	0.0044	0.05268	46.01	194.44	0.0193	0.23159	0.4266	110.218	0.58	103.316	0.7269	27.756
142	Dharmkot	53.3	0.918	0.00296	0.0354	30.96	130.854	0.0129	0.155	0.287	74.174	0.39	69.53	0.489	18.679
143	Dilamikot	41.2	0.709	0.00229	0.0274	23.936	101.148	0.01	0.1204	0.221	57.33	0.302	53.745	0.378	14.438
144		33.4	0.575	0.00185	0.022	19.404	81.998	0.00813	0.0976	0.179	46.481	0.244	43.57	0.306	11.705
145		96.3	1.659	0.00535	0.064	55.948	236.421	0.0234	0.281	0.518	134.015	0.706	125.62	0.883	33.748
146	Chottain	134.5	2.317	0.00747	0.0894	78.14	330.204	0.0327	0.393	0.7244	187.17	0.986	175.45	1.234	47.136
147	kalan	61.5	1.05	0.003	0.451	35.73	150.98	0.014	0.179	0.33	85.58	0.451	80.22	0.56	21.55
148		59.2	1.0199	0.00329	0.0393	34.39	145.33	0.01442	1.731	0.3188	82.385	0.434	77.226	0.543	20.74
149		87.5	1.507	0.00486	0.0582	50.835	214.817	0.0213	0.2558	0.4713	121.769	0.641	114.144	0.8031	30.664
150	Badhni	135.1	2.327	0.0075	0.0898	78.49	331.677	0.0329	0.395	0.727	188.011	0.9908	176.238	1.24	47.346
151	Dadiiii	68.2	1.175	0.00379	0.0453	39.622	167.43	0.0166	0.1994	0.367	94.91	0.5	88.967	0.625	23.901
152		71.2	1.226	0.0039	0.0473	41.365	174.79	0.01735	0.208	0.383	99.085	0.522	92.88	0.653	24.952
153		91.3	1.573	0.00507	0.0607	53.04	224.146	0.0222	0.2669	0.4917	127.05	0.669	119.1	0.838	31.996
154		59.1	1.018	0.00338	0.0393	34.33	145.093	0.0144	0.1728	0.318	82.246	0.433	77.096	0.54	20.7
155		38.44	0.661	0.00213	0.0255	22.309	94.273	0.0093	0.112	0.206	53.43	0.281	50.09	0.352	13.457
156	Moga	34.94	0.601	0.0019	0.0232	20.276	85.681	0.0085	0.102	0.1879	48.568	0.255	45.52	0.32	12.23
157		84.1	1.44	0.00467	0.0559	48.86	206.469	0.0204	0.245	0.452	117.037	0.616	109.708	0.771	29.4733
158	Buttar	67.2	1.157	0.0037	0.0447	39.041	164.97	0.0163	0.196	0.361	93.51	0.492	87.66	0.616	25.55
159	Duttai	47.2	0.813	0.0026	0.0313	27.42	115.878	0.0115	0.138	0.254	65.685	0.346	61.57	0.433	16.541
160		41.1	0.708	0.0022	0.027	23.878	100.902	0.01005	0.1201	0.221	57.196	0.3014	53.61	0.3772	14.403
161	Baddowal	96.8	1.667	0.00538	0.0643	56.23	237.64	0.02358	0.283	0.521	134.71	0.709	126.27	0.888	33.92

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion			1	Skelton	
S	Sample	concentrati	R	С	Diagma	Liver1+liver2	ST+SI+ULI+LLI	Urinary	Urine	Hair	Faeces	Cortical bone	Cortical bone	Trabecular bone	Trabecular bone
No	location	on in water	Kidneys	kidneys (µg g ⁻¹)	Plasma (µg)	(µg)	51+51+0L1+LL1 (μg)	Bladder	$(\mu g d^{-1})$	(µg d ⁻¹)	(µg d ⁻¹)	surface	volume	surface	volume non-
		(µg l ⁻¹)	(µg)	(ggg)				(µg)				(µg)	(µg)	(µg)	ex) (µg)
162		83.1	1.431	0.00461	0.055	48.279	204.014	0.0202	0.243	0.447	115.64	0.609	108.4	0.762	29.122
163		52	0.895	0.0028	0.034	30.21	127.66	0.0126	0.152	0.28	72.365	0.381	67.83	0.477	18.223
164		59.4	1.023	0.0033	0.039	34.51	145.83	0.0144	0.173	0.319	82.66	0.435	77.48	0.545	20.81
165		89.8	1.547	0.00499	0.0597	52.17	220.463	0.0218	0.262	0.483	124.97	0.658	117.144	0.824	31.47
166	Gill	72.4	1.247	0.004	0.048	42.062	177.74	0.0176	0.211	0.389	100.75	0.53	94.44	0.664	25.37
167	OIII	48.2	0.83	0.0026	0.032	28	118.33	0.0117	0.14	0.259	67.077	0.353	62.87	0.442	16.89
168		60.3	1.038	0.0033	0.04	35.03	148.03	0.0146	0.176	0.324	83.91	0.442	78.66	0.553	21.132
169		123.3	2.12	0.0068	0.082	71.63	302.7	0.03	0.36	0.664	171.59	0.904	160.84	1.131	43.211
170		91.2	1.571	0.005	0.0605	52.98	223.9	0.022	0.266	0.491	126.91	0.668	118.97	0.837	31.96
171	Mehna	61.2	1.05	0.003	0.04	35.55	150.24	0.0149	0.178	0.329	85.16	0.448	79.83	0.561	21.44
172		81.5	1.404	0.0045	0.0542	47.34	200.086	0.0198	0.238	0.438	113.41	0.597	106.31	0.748	28.56
173		96.1	1.655	0.0053	0.0639	55.832	235.93	0.023	0.281	0.517	133.73	0.704	125.36	0.882	33.67
174	Ajitwal	121.3	2.08	0.006	0.0806	70.47	297.79	0.0295	0.3547	0.6533	169	0.889	158.23	1.113	42.51
175	<i>i</i> ijitiwai	45.2	0.778	0.00251	0.03	26.26	110.96	0.011	0.132	0.243	62.902	0.331	58.96	0.414	15.84
176		38.4	0.661	0.0021	0.0255	22.3	94.273	0.0093	0.112	0.2068	53.43	0.28	50.092	0.352	13.457
177		85.5	1.473	0.0047	0.0568	49.673	209.906	0.0208	0.25	0.46	118.98	0.627	111.53	0.784	29.96
178	Dina	72.3	1.24	0.004	0.048	42.004	177.5002	0.0176	0.211	0.389	100.61	0.53	94.31	0.663	25.33
179	Dinu	52.5	0.904	0.0029	0.0349	30.5	128.89	0.0127	0.153	0.282	73.06	0.38	68.48	0.481	18.398
180		63.8	1.099	0.0035	0.042	37.06	156.63	0.0155	0.186	0.343	88.78	0.467	83.22	0.58	22.35
181		90.4	1.55	0.005	0.0601	52.52	221.93	0.022	0.264	0.486	125.804	0.662	117.92	0.829	31.68
182	Rajaina	71.5	1.23	0.0039	0.0475	41.54	175.53	0.0174	0.209	0.385	99.5	0.5224	93.27	0.656	25.05
183	Rajaina	39.6	0.682	0.0022	0,026	23.006	97.22	0.00965	0.115	0.213	55.109	0.29	51.65	0.363	13.87
184		43.8	0.752	0.002	0.029	25.44	107.53	0.0106	0.128	0.235	60.95	0.321	57.137	0.402	15.349
185	Kokri kokri	85.8	1.478	0.00476	0.057	49.84	210.64	0.0209	0.25	0.462	119.4	0.629	111.92	0.787	30.06

		Uranium	Kid	neys	Blood	Liver	GI Tract	Bladder		Excretion				Skelton	
S No	Sample location	concentrati on in water (µg l ⁻¹)	R Kidneys (µg)	C kidneys (µg g ⁻¹)	Plasma (µg)	Liver1+liver2 (µg)	ST+SI+ULI+LLI (µg)	Urinary Bladder (µg)	Urine (µg d ⁻¹)	Hair (µg d ⁻¹)	Faeces (µg d ⁻¹)	Cortical bone surface	Cortical bone volume	Trabecular bone surface	Trabecular bone volume non-
												(µg)	(µg)	(µg)	ex) (µg)
186		112.6	1.94	0.00625	0.0748	65.418	276.4388	0.27439	0.3292	0.6065	156.699	0.8257	146.887	1.033	39.461
187		66.9	1.152	0.0037	0.044	38.86	164.24	0.016	0.195	0.36	93.101	0.49	87.27	0.614	23.44
188		52.6	0.906	0.0029	0.0349	30.559	129.135	0.0128	0.153	0.283	73.2	0.3857	68.61	0.482	18.43
189		123.5	2.127	0.00686	0.0821	71.75	303.198	0.03	0.361	0.665	171.86	0.905	161.106	1.133	43.281
190	Iromial	86.1	1.483	0.0047	0.057	50.02	211.38	0.0209	0.251	0.463	119.82	0.631	112.317	0.79	30.174
191	karyal	65.1	1.21	0.0036	0.0433	37.82	159.82	0.0158	0.19	0.3506	90.59	0.477	84.92	0.597	22.81
192		58.9	1.014	0.0032	0.0391	34.21	0.014	144.6	0.172	0.317	81.96	0.431	76.83	0.54	20.64
193		62.7	1.08	0.00348	0.0417	36.42	153.93	0.0152	0.183	0.337	87.256	0.459	81.79	0.575	21.973
194	Babiha	55.3	0.952	0.003	0.0367	32.128	135.76	0.0134	0.161	0.297	76.958	0.405	72.139	0.507	19.38
195	Bhaike	36.5	0.628	0.00202	0.0242	21.205	89.6	0.008894	0.106	0.1966	50.79	0.267	47.61	0.335	12.79
196		41.2	0.709	0.00229	0.0274	23.936	101.148	0.01	0.1204	0.221	57.33	0.302	53.745	0.378	14.438
197		93.4	1.609	0.0051	0.062	54.263	229.3	0.022	0.273	0.503	129.97	0.684	121.84	0.857	32.732
198	Ludhaike	81.2	1.399	0.00451	0.054	47.175	199.35	0.01978	0.2374	0.43629	113.001	0.5955	105.92	0.745	28.457
199	Luullaike	68.2	1.175	0.00379	0.0453	39.622	167.43	0.0166	0.1994	0.367	94.91	0.5	88.967	0.625	23.901
200		51	0.947	0.00305	0.0365	31.95	135.027	0.0134	0.16	0.296	76.54	0.403	71.74	0.504	19.27
N	linimum	33.400	0.575	0.002	0.022	19.404	0.014	0.008	0.098	0.179	46.481	0.244	43.570	0.306	11.705
Μ	laximum	135.100	2.327	0.008	0.451	78.490	331.677	144.600	1.731	0.727	188.100	0.991	176.238	1.240	47.346
A	Average	72.994	1.258	0.004	0.057	42.427	177.851	1.466	0.229	0.393	101.000	0.535	95.268	0.670	25.612

R=Retention, C= Concentration, ST = Stomach, SI = Small intestine, ULI= Upper Large Intestine, LLI= Lower Large Intestine

	Uranium concentration (µg l ⁻¹)	Bladder wall	Bone Surface	Breast	Oesphagu s	Stomach Wall	Colon	Liver	Ovaries	Red Marrow	Lungs	Skin	Testes	Thyroid	Remainder	Effective dose
							Barnala	District								
	29,500	168.2	18.83	167.2	167.2	170.2	246.2	3.314	205	2.401	167.9	167.2	204.6	167.2	2.29	904.8
Minimum	28.500	nSv	μSv	nSv	nSv	nSv	nSv	μSv	nSv	μSv	nSv	nSv	nSv	nSv	2.38 μSv	nSv
	224 700	1.38	155	1.377	1.377	1.402	2.028	27.29	1.688	19.77	1.382	1.377	1.685	1.377	19.58	7.451
Maximum	234.700	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv	μSv
	111 412	657.9	73.62	653.7	653.7	665.6	962.8	12.95	801.5	9.389	656.4	653.7	800	653.7	9.298	3.537
Average.	111.413	nSv	μSv	nSv	nSv	nSv	nSv	μSv	nSv	μSv	nSv	nSv	nSv	nSv	μSv	μSv
							Moga l	District								
	22.400	197.2	22.07	195.9	195.9	199.5	288.6	3.884	240.2	2.814	196.8	195.9	239.8	195.9	2.787	1.06
Minimum	33.400	nSv	μSv	nSv	nSv	nSv	nSv	μSv	nSv	μSv	nSv	nSv	nSv	nSv	μSv	μSv
N .	125 100	797.8	89.27	729.6	792.6	807.1	1.167	15.71	971.9	11.38	796	792.6	970.1	792.6	11.27	4.289
Maximum	135.100	nSv	μSv	nSv	nSv	nSv	μSv	μSv	μSv	μSv	nSv	nSv	nSv	nSv	μSv	μSv
	72.994	431	48.23	428.2	428.2	436.1	630.8	8.489	525.1	6.151	430	428.2	524.1	428.2	6.091	2.317
Average	72.994	nSv	μSv	nSv	nSv	nSv	nSv	μSv	nSv	μSv	nSv	nSv	nSv	nSv	μSv	μSv

Table 6.5: Dose received to various organs using biokinetic modelling

Sr. No	Sample location	Source of water	Uranium concentration (µg l ⁻¹)	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
			Barnala district			
1		UG	56.2	495	548	7.8
2	Dhanola	SW	130.4	580	1231	7.3
3	Dilationa	UG	171.5	1370	1781	7.1
4		SW	74.2	646	733	7.7
5		UG	112.3	1063	1269	7.1
6	Bhadur	UG	95.8	940	936	7.7
7	Diladul	SW	75.1	521	768	7.7
8		SW	77	743	835	7.7
9		SW	176.5	1227	1688	7.1
10	Nainawal	UG	81.2	726	890	7.7
11	Nainewal	UG	189.9	1331	1776	6.8
12		SW	96.4	982	1023	7.7
13		SW	161.2	1352	1747	7.1
14	Jangiana	UG	185.5	1425	1885	6.8
15	Jangiana	UG	112.6	1296	1325	7.4
16		SW	108.3	1089	1199	7.4
17		SW	102.1	1040	1020	7.6
18	Channa	UG	58.4	558	758	7.8
19	Channa	UG	136.4	1300	1332	7.5
20		SW	69.8	853	686	7.7
21		SW	64	838	627	7.7
22	Тара	UG	152.7	1307	1650	7.4
23	Tapa	SW	131.36	1486	1387	7.1
24	1	SW	120.6	1356	1356	7.1
25		UG	85.9	952	912	7.7
26	Mehta	SW	64.8	851	730	7.7
27		UG	31.5	415	454	7.8

Table 6.6: Measurement of pH, TDS and EC in studied area

Sr. No	Sample location	Source of	Uranium concentration	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
		water	(µg l ⁻¹)	_		
28		SW	45.8	588	527	7.8
29		UG	122.7	1255	1238	7.1
30	Diwana	UG	146.9	1404	1356	7.2
31	Diffund	SW	168.2	1529	1584	7.3
32		SW	113.4	1228	1181	7.6
33		SW	75.2	617	683	7.8
34	Dhurkot	SW	137.3	1326	1477	7.2
35	Dildikot	UG	145.5	1402	1439	7.3
36		UG	111.6	1158	1064	7.2
37		UG	122.7	1251	1230	7.2
38	Draj	SW	113.2	1168	1195	7.2
39		SW	68.1	869	770	7.8
40		UG	77.9	885	816	7.8
41		SW	129.9	1274	1279	7.2
42	Handiya	UG	142.3	1521	1468	7.1
43	Tanurya	SW	76.5	765	773	7.8
44		UG	84.2	936	810	7.8
45		SW	152.5	1504	1642	7.1
46	Mehal kalan	SW	68.3	748	836	7.8
47		UG	79.2	916	969	7.8
48		UG	179.4	1223	1671	6.8
49		UG	66.3	739	706	7.8
50	Sanahara	SW	172.4	1628	1695	6.8
51	Sanghere	SW	94.5	1170	1072	7.8
52	-	UG	112.7	1264	1160	7.3
53		SW	86.2	985	905	7.8
54	Wajid ka	SW	142.5	1330	1399	7.2
55	Wajid ke	UG	88.2	923	880	7.7
56		UG	168.5	1578	1619	6.9

Sr. No	Sample location	Source of	Uranium concentration	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
110	location	water	(µg l ⁻¹)		(µsem)	
57		SW	159.7	1545	1518	7
58	Chuhan ke	UG	174.2	1687	1709	6.9
59	Chanan Ke	UG	118.4	1236	1098	7.1
60		SW	97.1	1059	1063	7.7
61		UG	234.7	1963	2068	6.6
62	Bhadalwad	SW	212.3	1942	1974	6.7
63	Dhadarwad	UG	116.8	1055	1126	7.3
64		SW	134.9	1222	1469	7.2
65		SW	118.7	1180	1279	7.2
66	Sehjra	UG	139.6	1260	1449	7.2
67	Senjra	SW	98.4	1070	1084	7.7
68		UG	134.2	1208	1439	7.2
69		SW	118.2	1278	1287	7.4
70	Barnala	UG	182.4	1765	1959	7
71	Darnala	SW	28.5	384	491	8.1
72		UG	47.9	623	672	7.9
73		UG	138.5	1222	1468	7.1
74	Dongorh	SW	129.4	1194	1309	7.1
75	Dangarh	SW	47.9	699	518	7.9
76		UG	57.3	619	663	8
77		SW	68.1	814	763	7.8
78	Haricarh	UG	69.2	781	779	7.9
79	Harigarh	SW	57.4	687	633	8
80		RW	67.2	878	814	7.8
81		SW	60.4	709	867	8
82	A anal Valar	SW	61.1	772	688	7.9
83	Aspal Kalan _	SW	43.4	410	659	8
84		UG	66.5	603	751	7.9
85	Bheni Jassa	UG	152.3	1320	1677	7.2

Sr. No	Sample location	Source of water	Uranium concentration (µg l ⁻¹)	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
86		SW	134.1	1323	1284	7.1
87		SW	46.2	316	669	8
88		UG	80.2	989	938	7.8
89		UG	182.8	1612	1758	6.9
90	Kattu	SW	152.4	1496	1630	7.5
91	Kattu	SW	112.1	1322	1282	7.6
92		UG	132.5	1390	1365	7.2
93		UG	91.6	931	891	7.9
94	Attar	SW	86.7	835	759	7.8
95	Singhwala	SW	57.24	745	617	8
96		UG	56.57	739	507	8
97		UG	204.5	1824	1973	6.8
98	Kurar	SW	176.7	1605	1646	7.7
99	Kulai	SW	124.2	1204	1330	7.7
100		UG	155	1448	1525	7.3
Minim	um		28.5	316	454	6.6
Maxim	um		234.7	1963	2068	8.1
Averag	;e		111.413	1088.9	1154.38	7.465
Standa	rd Deviation		45.3465	366.177	413.499	0.37883
P5			47.815	519.7	546.95	6.8
P25			73.1	778.75	772.25	7.175
P50			112.45	1163	1170.5	7.55
P75			142.35	1327	1468	7.8
P95			182.935	1630.95	1786.2	8
			Moga District	I		
101		SW	71.5	808	852	7.8
102	Moga	UG	61.2	604	745	7.8
103	Moga	SW	55.2	521	680	7.9
104		UG	93.9	964	1057	7.8

Sr. No	Sample location	Source of water	Uranium concentration (µg l ⁻¹)	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
105		SW	101.4	1023	1166	7.6
106		UG	80.5	902	939	7.8
107	Marhi	SW	58.6	571	705	7.9
108	-	UG	61.3	612	579	7.8
109		UG	91.6	994	1021	7.8
110	-	SW	63.8	673	704	7.9
111	Rode	SW	57.2	516	670	7.9
112		UG	61.5	679	897	7.9
113		UG	73.1	791	882	7.8
114		SW	61.3	612	826	7.8
115	khokhrana	SW	49.1	502	686	8
116	-	UG	55.4	568	610	7.9
117		UG	102.4	1016	1182	7.6
118		SW	78.9	745	930	7.9
119	Nathuwala	SW	61.3	674	765	7.9
120	-	UG	52.8	514	674	8
121		UG	98.7	990	1047	7.8
122	C	SW	77.5	738	824	7.9
123	Smalsar	SW	63.2	635	797	7.9
124		UG	65.1	631	907	7.9
125		UG	120.2	1225	1375	7.6
126	Charik	SW	112.5	1338	1216	7.6
127		SW	75.3	806	857	7.8
128		UG	77.6	786	828	7.8
129	- Smadh Bhai	UG	91.7	942	1097	7.8
130		SW	85.2	842	925	7.9
131		SW	41.5	523	657	7.9
132		UG	35.5	461	440	8
133		UG	121.8	1369	1383	7.5

Sr. No	Sample location	Source of water	Uranium concentration (µg l ⁻¹)	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
134	NT'1 1	SW	95.3	991	1103	7.7
135	Nihal Singhwala	SW	58.5	582	795	7.8
136	Singhwala	UG	72.1	758	840	7.8
137		SW	84.2	872	994	7.8
138	Uimetnure	UG	125.6	1340	1321	7.4
139	Himatpura	SW	69.2	702	726	7.8
140		UG	72.1	797	815	7.8
141		UG	79.2	849	839	7.8
142	Dharmkot	SW	53.3	576	680	8
143	Dilamikot	SW	41.2	517	570	8
144		UG	33.4	454	436	8.2
145		SW	96.3	1009	1042	7.8
146	Chottain	UG	134.5	1443	1415	7.4
147	kalan	SW	61.5	766	764	7.8
148		UG	59.2	675	683	7.9
149		SW	87.5	860	950	7.8
150	Badhni	UG	135.1	1372	1433	7.3
151		SW	68.2	633	787	7.8
152		UG	71.2	868	866	7.9
153		UG	91.3	1160	1063	7.8
154	Moga	SW	59.1	629	697	8
155	Willga	UG	38.44	458	446	8.1
156	-	SW	34.94	434	410	8
157		UG	84.1	915	954	7.8
158	Buttar	SW	67.2	709	739	7.8
159		UG	47.2	523	684	7.9
160		SW	41.1	479	591	8
161	Baddowal	UG	96.8	1020	1077	7.9
162	Dauuowai	SW	83.1	927	993	7.8

Sr. No	Sample location	Source of water	Uranium concentration (µg l ⁻¹)	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
163		SW	52	463	669	7.9
164		UG	59.4	517	658	7.9
165		UG	89.8	991	936	7.8
166	Gill	SW	72.4	849	839	7.9
167	UIII	SW	48.2	549	527	8
168	-	UG	60.3	655	752	7.9
169		UG	123.3	1258	1346	7.3
170	Mehna	UG	91.2	1203	1042	7.8
171	Ivienna	SW	61.2	711	869	7.9
172	-	UG	81.5	931	901	7.8
173		SW	96.1	1126	1090	7.8
174	Ajitwol	UG	121.3	1268	1368	7.3
175	Ajitwal	UG	45.2	495	537	8
176	-	SW	38.4	600	433	8.1
177		UG	85.5	943	915	7.8
178	Dina	SW	72.3	815	845	7.8
179	. Dina	SW	52.5	538	601	7.9
180		UG	63.8	704	731	7.9
181		UG	90.4	957	1069	7.8
182	Dojojno	SW	71.5	871	873	7.8
183	Rajaina	SW	39.6	429	483	8.2
184		UG	43.8	541	510	8
185		SW	85.8	873	979	7.8
186	- Kokri kokri	UG	112.6	1163	1297	7.3
187		UG	66.9	743	713	7.8
188		SW	52.6	261	666	7.7
189	karyal	UG	123.5	1241	1310	7.8
190		SW	86.1	909	956	7.7
191		UG	65.1	749	727	7.5

Sr. No	Sample location	Source of water	Uranium concentration (µg l ⁻¹)	TDS (mg l ⁻¹)	EC (µScm ⁻¹)	рН
192		SW	58.9	634	920	7.7
193		UG	62.7	691	781	7.7
194	Babiha	SW	55.3	681	695	7.6
195	Bhaike	SW	36.5	543	515	7.7
196	-	UG	41.2	592	504	7.7
197		UG	93.4	1017	1058	7.5
198	Ludhaike	SW	81.2	872	927	7.6
199		UG	68.2	743	738	7.8
200		SW	51	641	609	7.5
Minim	um		33.4	261	410	7.3
Maxim	um		135.1	1443	1433	8.2
Averag	je		72.99	786.6	850.25	7.801
Standar	rd Deviation		24.16	254.19	244.849	0.19
P5			38.438	460.85	481.15	7.4
P25			56.75	589.5	682.25	7.8
P50			68.7	744	833.5	7.8
P75			88.07	942.25	993.25	7.9
P95			121.87	1271.5	1347.1	8

OVERALL CONCLUSION

The present research work has been carried out to assess the radioactivity levels and associated health effects due to presence of radon/thoron, their progeny and uranium concentration in the environment of studied area.

The results shows that out of 200 dwellings, 32.5% have higher annual average radon concentration than the recommended value and 9% of the dwellings have higher annual average radon progeny concentration (EERC) than the worldwide average value. 100% of the dwellings have higher annual average thoron concentration than the world average value and 96% have higher annual average thoron progeny concentration (EETC) than the world average value which may be due to the use of thorium rich materials used in construction of dwellings of this area. The measured average radon, thoron and their progeny concentration in the studied area have been found higher in winter season as compared to rainy and summer season. Also the poor ventilated houses have more concentration than the well ventilated houses. This may be due to less exchange of gases between the indoor and outdoor environment in winter and poorly ventilated houses. The annual average equilibrium factor between radon and its progeny is 0.37 which is slightly less than world average value. The total annual effective inhalation dose received to the local population is well below the recommended level.

The radon mass exhalation rates in all soil samples have lower value than the worldwide average value whereas the thoron surface exhalation rates in 98% samples have higher values than worldwide average value. The variation in the exhalation rates may be because of varied geological locations of soil samples, topography, radon emanation factor and soil porosity. The higher thoron surface exhalation rates may be because of higher thorium rich contents in rocks in the Northern portion of India. Weak correlation has been found between average indoor radon/thoron concentration and exhalation rates in samples which may be due to the reason that the, radon/thoron emitted from soil surface underneath the concrete and mud houses would not contribute to indoor radon/thoron concentrations.

The radon concentration in all water samples have been found to be below the recommended limit. The annual effective dose due to ingestion and inhalation for infants has been found to be higher than the dose received by children and adults. Whereas the overall dose received by the residents is well below the recommended

limit. The underground water samples have slightly higher values of radon concentration than in surface water samples which may be because the radon easily escape from surfaces while as underground water retains. A weak positive correlation has been observed between radon in underground water with depth.

The uranium concentration in 99.5% of water samples have higher value than the recommended limit. The higher uranium concentration observed may be due to geology, anthropogenic activities and use of phosphate fertilizers in huge quantity for agriculture purposes. The calculated hazard quotient in 98% of samples is higher than one hence these areas may have increased probability of kidney and lung diseases. Biokinetic model has been applied to calculate retention, removal and dose received by various organs of human body due intake of uranium from drinking water. The retention of uranium has been calculated in the organs like GI tract, skeleton, blood, kidney, liver, urinary bladder. The highest retention of ingested uranium has been found in GI tract. The excretion of uranium has been calculated through excretory paths like hair faeces and urine. It has been found that the excretion rate of uranium is much greater through large intestine pathways (faeces) than through urine or hair. The dose received to various organs like bone surfaces, red bone marrow, thyroid, breast, skin, oesophagus, stomach and colon, liver and bladder wall has been calculated. It has been found that highest dose received to bone surface out of the all organs of human body.

Physicochemical parameters like pH, TDS and EC have been also studied in total 200 groundwater and surface water samples. In all the samples, the pH value lies in the recommended permissible range. 5% samples have lower pH value and 95% samples have higher value than 7. Hence, the water in the most of studied area is alkaline. The pH value of all the samples lies in permissible range. The total dissolved solids (TDS) in 7% samples have lesser value and 93% samples have higher TDS value than the recommended contaminant level which shows that the water in most of the area may not be fit for drinking. The electrical conductivity in 48.5% samples have lower value and in 41.5% samples have higher value than the recommended value. It has been observed that the total dissolved solids and electrical conductivity have higher values in underground water samples than surface water. A positive correlation has been observed between uranium concentration with pH, TDS and EC.

The radon concertation in the air and water along with radon mass exhalation rates in soil has been found to be lower than the recommended value, hence it may not pose any significant radiological risk to the residents of studied area. Whereas thoron, thoron surface exhalation rates and uranium in water have higher values than the recommended level, therefore these may be of concern for the local population from the health risk point of view. The data will contribute towards the national pool for mapping and for further studies.

FUTURE SCOPE

As uranium concentration has come out to be higher than safe limit, hence further research may be carried out to understand the cause and associated health effects for the residents of studied area. Although radon concentration has been found to be less but thoron concentration and thoron exhalation rates have been found to be higher, so a detailed study may be carried out for the construction and building materials used in the houses.