DESIGN, SYNTHESIS AND EVALUATION OF COUMARIN FUSED/TETHERED NITROGEN CONTAINING HETEROCYCLES AS ANTICANCER AGENTS

А

THESIS SUBMITTED TO MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA (INDIA)

IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

PHARMACEUTICAL SCIENCES

Bу

Rohit Bhatia Regd. No. : 16201MPE01

Department of Pharmaceutical Sciences & Technology Maharaja Ranjit Singh Punjab Technical University Bathinda (Punjab), India

2021

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis, entitled "Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen Containing Heterocycles as Anticancer Agents" in fulfillment of the requirements of the award of the degree of Doctor of Philosophy in Faculty of Pharmaceutical Sciences and submitted in Maharaja Ranjit Singh Punjab Technical University, Bathinda is an authentic record of my own work carried out during a period from 2016 to 2021 under the supervision of **Dr. Raj Kumar Narang** and **Dr. Ravindra Kumar Rawal**.

The matter embodied in this thesis has not been submitted by me for the award of any other degree of this or any other University/Institute.

(ROHIT BHATIA)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

KRAmal

Dr. Raj Kumar Narang (**Supervisor**) Professor Department of Pharmaceutics ISF College of Pharmacy, Moga Dr. Ravindra Kumar Rawal (Co-Supervisor) Principal Scientist Chemical Science and Technology Division CSIR-NEIST, Jorhat

The Ph.D. Viva-Voice examination of Rohit Bhatia, has been held on_____

Sign. of Supervisor

Sign. of Co-Supervisor

Sign. of External Examiner

ACKNOWLEDGEMENT

Behind every successful journey, it is always said that there is an invisible force, which shapes things in the right way and direction in which they should be. I find it my moral duty to bow to that divine power "ALMIGHTY GOD" my Babaji, for bestowing me with everything, and because of WHOM, I could accomplish my research task with success.

I would like to extend my sincerest regard to my supervisors, Prof. (Dr.) Raj Kumar Narang and Prof. (Dr.) Ravindra Kumar Rawal without whom, this work would not have been possible. I take this opportunity to express my heartfelt gratitude and extreme respect for him. Throughout this work, he has always given me strong support, encouragement, and confidence along with criticism, when necessary, which enabled me to raise my standards of research.

With a deep sense of gratitude, I would again extend my sincere thanks to Prof. (Dr.) Ravindra Kumar Rawal, who introduced me to the field of research. Thank you so much, Sir, for your continuous support, persistent encouragement and wholehearted help.

With high esteems and profound regards, I take the privilege to express my sincere gratitude to Mr. Parveen Garg, Chairman, ISFCP, Moga for his encouragement, good wishes and providing me with the best facilities during the research work.

It gives me immense pleasure to express my gratitude to Prof. (Dr.) Rahul Deshmukh, Head, Department of Pharmaceutical Sciences Maharaja Ranjit Singh Punjab Technical University, Bathinda for his support.

I also take the privilege to express my sincere gratitude to all the faculty members of the Department of Pharmaceutical Sciences, Maharaja Ranjit Singh Punjab Technical University, Bathinda with a special mention of Dr. Ashish Baldi, Dr. Puneet Bansal, Dr. Uttam Kumar Mandal, Dr. Amit Bhatia for their encouragement and good wishes.

I express my gratitude and thankfulness to Prof. GD Gupta, ISFCP, Moga for all the support, guidance and motivation.

I express my thankfulness to Mr. Abhay Pandey and all staff of ISFAL, Moga for providing the necessary facilities to carry out my research work.

My special thanks go to all the non-teaching staff of the ISFCP, Moga for their timely support specially Mrs. Harinder, Mrs. Kanchan, Mr. Sewak and Mrs. Hardeep.

I express a deep sense of gratitude to Dr. Vikramdeep Monga, Dr. Pooja Chawla, Dr. Shamsher Singh, Dr. Amit Sharma, Prof. G. S. Ganti whose blessings were always with me.

I am grateful for the heartfelt assistance, encouragement, and friendship that I received from my friends Dr. Bharat Khurana, Dr. Vir Vikram Sharma, Mr. Sandeep Rathor, Mr. Amandeep Singh, Mr. Anupam Awasthi, Dr. Bhupinder Kumar, Mr. Ravi Ranjan, Mr. Sourabh Kosey, Dr. Sidharth Mehan, Mr. Sudhir Thukral, Mr. Khadga Raj, Dr. Daisy Arora, Dr. Nishu Singla, Ankita, Ms. Shelly, Ms. Avileen, Ms. Shelly, Ms. Tanya, Ms. Dilpreet Kaur, Ms. Karamjeet Kaur.

The informal support and encouragement by ISF Faculty members have been indispensable. It is not possible to name all of them but at this moment of my life, I remember all of them and thank each of them for their help and assistance.

I would like to give a shower of thanks to my friends outside from ISF; Dr. Dharmendra Kumar, Mr. Ankaj Choudhary, Mrs. Archana Choudhary, Mr. Tarun Sharma, Mr. Nitin Gupta, Mr. Dev Raj, Mrs. Pratibha Sharma, Dr. Kapil Verma, Mr. Bhartendu for their continuous support and love.

I will do injustice if I fail to express my deep sense of gratitude and gratefulness towards my parents (Mr. Piar Chand and Late Mrs. Tripta Devi) and parents' in-laws (Mr. Ajit Kumar and Late Mrs. Sarla Devi). Special thanks to my Father (Mr. Piar Chand Ji), who always inspired me, supported me, encouraged me, and always stood next to me in the tough times. He even made me capable enough to stand on my own. Thank you a lot for your untiring love, care, support, and sacrifice. I fall short of words to express my feelings for all my parents's deeds and concern and would dedicate the thesis to them.

I take this opportunity to express my heartfelt acknowledge to my Wife and best friend Dr. Priya Bharti for her love, affection, and cooperation during this period of my life. She is very encouraging, optimistic and sacrificed her much-nurtured dreams for my future. Dear wife your unconditional love, support and care was the driving force which helped me to accomplish this never-ending cascade.

A smile comes to my face when I mention the name of my daughter Oshin Bhatia who is two years old now. My special acknowledgment to her for her constant love, moral support, and sacrifice for my research, yet she never complained about my long seating at the computer and staying at the lab.

My sisters (Mrs. Deepika, Mrs. Madhu), brothers (Mr. Virender Kumar, Mr. Sanjeev Kumar, Mr. Rahul Chouhan), brothers in law (Mr. Rajnish Bhardwaj, Mr. Aman Bharti, Mr. Balwinder Kumar), sisters in law (Mrs. Dimple Bhatia, Mrs. Shaveta Kumari, Mrs. Kiran Kumari) who have been the pillars of my life. This thesis would not have been possible without their encouragement and confidence on me. I would like to thank my whole family for the blessings they bestowed on me.

My naughty family kids Yuven, Aryansh, Sarvi, Saksham, Kanika, Anish, Manish, Ritik, Simran have brought lots of smiles and made my life beautiful with their warm and sweet gestures.

At last, I would like to acknowledge all those whose names remained unmentioned here.

(Rohit Bhatia)

Figure	Caption of figure	Page
No.		No.
1.1	Prominent causes of cancer	2
1.2	Etiology and Pathogenesis of Cancer	4
1.3	Available treatments against cancer	6
1.4	Impact of estrogen in development of breast cancer	12
1.5	Role of aromatase expression in breast cancer progression	13
1.6	Steroidal and non-steroidal aromatase inhibitors	14
1.7	Consequences of HER2 over-expression	16
1.8	Structure of coumarin	17
1.9	Pharmacological diversity of coumarins	17
1.10	Some bio-active coumarin containing drugs	18
1.11	Concept of molecular hybridization	19
1.12	Some Coumarin Hybrid Compounds against Breast Cancer	20
1.13	Structure of quinoxaline	21
1.14	Structure of dihydropyrimidinone	21
1.15	Structure of dihydropyridine	
1.16	Steps involved in a docking procedure	
1.17	Rationale behind the design of Coumarin-Quinoxaline Hybrids	
1.18	Design strategy for Coumarin-Dihydropyrimidinone Hybrids	27
1.19	Design strategy for Coumarin-Dihydropyridine Hybrids	28
2.1	SAR of Coumarin-Uracil Hybrids	31
2.2	SAR of Coumarin-Pyridine & Coumarin-Coumarin Hybrids	32
2.3	Aspects related to SAR of coumarin-aminophenyl hybrids	34
2.4	SAR of Coumarin-n-hydroxy cinnamide hybrids	35
2.5	SAR studies of coumarin-pyrimidine hybrids	36
2.6	SAR of coumarin-pyridine hybrids	37
2.7	SAR of coumarin-thiazole-pyrazole hybrids	38
2.8	Coumarin-benzimidazolium salt hybrids	38
2.9	SAR studies of coumarin-thiadiazole hybrids	39
2.10	SAR of coumarin-piperazine hybrids	40

LIST OF FIGURES

2.11	SAR studies of isoxazole tethered coumarin derivatives	41
2.12	Coumarin-triazole Hybrid compounds	41
2.13	Benzocoumarin-stilbene hybrid with maximum potency	42
2.14	Indole-coumarin-thiadiazole hybrids with maximum potency	43
2.15	Most potent Coumarin-Pyrimidine hybrids	44
2.16	Most potent Coumarin-Triazolo Pyrimidine Hybrids	45
2.17	SAR of coumarin-sulphonamide hybrids as aromatase inhibitors	46
2.18	SAR studies of pyridine-coumarin hybrids as PI3K inhibitors	46
2.19	SAR studies of C4 substituted coumarin derivatives as CDK	47
	inhibitor	
2.20	Most potent Coumarin-Imidazo [1,2-a] Pyrazine Hybrids	48
2.21	Coumarin-indole hybrids with maximum potency	49
2.22	Coumarin hybrids with Isoxazole/thiazole with best activity	50
2.23	Coumarin-phenylsulfonylfuroxan hybrid with maximum potency	50
2.24	Coumarin-Monastrol Hybrid compounds against breast cancer	51
2.25	Coumarin-triphenylethylene hybrids with maximum potency	52
2.26	Coumarin-benzimidazole hybrids with maximum potency	
2.27	Coumarin-cinnamoyl hybrids with maximum potency	
2.28	Most potent Coumarin-Benzothiazole Hybrids	
2.29	Most potent Coumarin-Chalcone Hybrid compounds	54
2.30	Coumarin-imidazolyl hybrids with maximum potency	55
2.31	Coumarin-stilbene hybrids with maximum potency	56
3.1	(a) Cavity of aromatase (PDB Id: 3S7S) (b) Cavity of HER2	59
	(PDB Id: 3WSQ)	
3.2	Characterization of Intermediate	61
3.3	Characterization of isatin intermediate	62
3.4	Characterization of 3-acetoacetyl coumarin derivative	72
4.1	Designed Compounds RB1-RB90	99
4.2	Interaction poses of compound RB13 with aromatase (a) 2D	108
	interactions (b) RB13 embedded in receptor pocket (c)	
	Interactions along with distances	
4.3	Interaction poses of compound RB13 with HER2 (a) 2D	109
	interactions (b) RB13 embedded in receptor pocket (c)	
i		

	Interactions along with distances	
		1 4 4
4.4	Figure 4.4: Interaction poses of compound RB14 with Aromatase	111
	(a) 2D interactions (b) RB14 embedded in receptor pocket (c)	
	Interactions along with distances	
4.5	Interaction poses of compound RB14 with HER2 (a) 2D	112
	interactions (b) RB14 embedded in receptor pocket (c)	
	Interactions along with distances	
4.6	Interaction poses of compound RB16 with Aromatase (a) 2D	114
	interactions (b) RB16 embedded in receptor pocket (c)	
	Interactions along with distances	
4.7	Interaction poses of compound RB16 with HER2 (a) 2D	115
	interactions (b) RB16 embedded in receptor pocket (c)	
	Interactions along with distances	
4.8	Interaction poses of compound RB17 with Aromatase (a) 2D	117
	interactions (b) RB17 embedded in receptor pocket (c)	
	Interactions along with distances	
4.9	Interaction poses of compound RB17 with HER2 (a) 2D	118
	interactions (b) RB17 embedded in receptor pocket (c)	
	Interactions along with distances	
4.10	Interaction poses of compound RB18 with Aromatase (a) 2D	120
	interactions (b) RB18 embedded in receptor pocket (c)	
	Interactions along with distances	
4.11	Interaction poses of compound RB18 with HER2 (a) 2D	121
	interactions (b) RB18 embedded in receptor pocket (c)	
	Interactions along with distances	
4.12	Interaction poses of compound RB36 with Aromatase (a) 2D	123
	interactions (b) RB36 embedded in receptor pocket (c)	
	Interactions along with distances	
4.13	Interaction poses of compound RB36 with HER2 (a) 2D	124
	interactions (b) RB36 embedded in receptor pocket (c)	
	Interactions along with distances	
4.14	Interaction poses of compound RB86 with Aromatase (a) 2D	126
	interactions (b) RB86 embedded in receptor pocket (c)	

	Interactions along with distances	
4.15	Interaction poses of compound RB86 with HER2 (a) 2D	127
	interactions (b) RB86 embedded in receptor pocket (c)	
	Interactions along with distances	
4.16	Interaction poses of exemestane with Aromatase (a) 2D	128
	interactions (b) Interactions along with distances	
4.17	Interaction poses of trastuzumab with HER2 (a) 2D interactions	129
	(b) Interactions along with distances	
4.18	Overlay of internal ligand (red) of aromatase and re-docked	130
	ligand (blue)	
4.19	Designed Compounds (CD1-CD90)	134
4.20	Interaction poses of CD6 with aromatase (a) 2D interactions (b)	139
	CD6 embedded in receptor pocket (c) Interactions along with	
	distances	
4.21	Interaction poses of CD8 with aromatase (a) 2D interactions (b)	141
	CD8 embedded in receptor pocket (c) Interactions along with	
	distances	
4.22	Interaction poses of CD19 with aromatase (a) 2D interactions (b)	142
	CD19 embedded in receptor pocket (c) Interactions along with	
	distances	
4.23	Interaction poses of CD20 with aromatase (a) 2D interactions (b)	144
	CD20 embedded in receptor pocket (c) Interactions along with	
	distances	
4.24	Interaction poses of CD28 with aromatase (a) 2D interactions (b)	145
	CD28 embedded in receptor pocket (c) Interactions along with	
	distances	
4.25	Interaction poses of CD44 with aromatase (a) 2D interactions (b)	147
	CD44 embedded in receptor pocket (c) Interactions along with	
	distances	
4.26	Interaction poses of Exemestane with aromatase (a) 2D	148
	interactions (b) Interactions along with distances	
4.27	Designed coumarin-dihydropyridine hybrids (DP1-DP75)	152
4.28	Interaction poses of DP12 with aromatase (a) 2D interactions (b)	149

	DP12 embedded in receptor pocket (c) Interactions along with	
	distances	
4.29	Interaction poses of DP18 with aromatase (a) 2D interactions (b)	156
	DP18 embedded in receptor pocket (c) Interactions along with	
	distances	
4.30	Interaction poses of DP20 with aromatase (a) 2D interactions (b)	159
	DP20 embedded in receptor pocket (c) Interactions along with	
	distances	
4.31	Interaction poses of DP27 with aromatase (a) 2D interactions (b)	161
	DP27 embedded in receptor pocket (c) Interactions along with	
	distances	
4.32	Interaction poses of DP28 with aromatase (a) 2D interactions (b)	162
	DP28 embedded in receptor pocket (c) Interactions along with	
	distances	
4.33	Interaction poses of DP32 with aromatase (a) 2D interactions (b)	164
	DP32 embedded in receptor pocket (c) Interactions along with	
	distances	
4.34	Interaction poses of DP61 with aromatase (a) 2D interactions (b)	165
	DP61 embedded in receptor pocket (c) Interactions along with	
	distances	
4.35	Interaction poses of Exemestane with aromatase (a) 2D	166
	interactions (b) Interactions along with distances	
4.36	Plausible mechanism of dihydropyrimidinones	173
4.37	Plausible mechanism for formation of symmetrical	176
	dihydropyridines	
4.38	Percentage cell viability versus experimental trials using MTT	179
	assay against MCF-7 cell line. Data was shown as Mean \pm SD	
	and statistically analyzed by one way ANOVA followed by	
	tukey's post hoc test. $p^a \le 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. exemestane and $p^c \ge 0.05$ vs.	
	trastuzumab was considered to be statistically insignificant.	
4.39	Percentage cell viability versus experimental trials using MTT	179

	statistically analyzed by one way ANOVA followed by tukey's	
	post hoc test. $p^a \le 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. exemestane and $p^c \ge 0.05$ vs.	
	trastuzumab was considered to be statistically insignificant	
4.40	Percentage cell viability versus experimental trials using MTT	180
	assay against HepG-2 cell line. Data was shown as Mean \pm SD	
	and statistically analyzed by one way ANOVA followed by	
	tukey's post hoc test. $p^a \leq 0.05$ vs. control was considered to be	
	statistically significant and $p^b \ge 0.05$ vs. doxorubicin was	
	considered to be statistically insignificant	
4.41	Percentage cell viability versus experimental trials using MTT	180
	assay against A549 cell line. Data was shown as Mean \pm SD and	
	statistically analyzed by one way ANOVA followed by tukey's	
	post hoc test. $p^a \leq 0.05$ vs. control was considered to be	
	statistically significant and $p^b \ge 0.05$ vs. doxorubicin was	
	considered to be statistically insignificant	
4.42	Percentage cell viability versus experimental trials using MTT	183
	assay against MCF-7 cell line. Data was shown as Mean \pm SD	
	and statistically analyzed by one way ANOVA followed by	
	tukey's post hoc test. $p^a \leq 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. exemestane was considered	
	to be statistically insignificant.	
4.43	Percentage cell viability versus experimental trials using MTT	183
	assay against T47D cell line. Data was shown as Mean \pm SD and	
	statistically analyzed by one way ANOVA followed by tukey's	
	post hoc test. $p^a \leq 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. exemestane was considered	
	to be statistically insignificant.	
4.44	Percentage cell viability versus experimental trials using MTT	184
	assay against HepG2 cell line. Data was shown as Mean \pm SD	
	and statistically analyzed by one way ANOVA followed by	
	tukey's post hoc test. $p^a \leq 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. doxorubicin was considered	
	·	

	to be statistically insignificant.	
4.45	Percentage cell viability versus experimental trials using MTT	184
	assay against A549 cell line. Data was shown as Mean \pm SD and	
	statistically analyzed by one way ANOVA followed by tukey's	
	post hoc test. $p^a \le 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. doxorubicin was considered	
	to be statistically insignificant.	
4.46	Percentage cell viability versus experimental trials using MTT	187
	assay against MCF-7 cell line. Data was shown as Mean \pm SD	
	and statistically analyzed by one way ANOVA followed by	
	tukey's post hoc test. P ^a ≤0.05 vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. exemestane was considered	
	to be statistically insignificant.	
4.47	Percentage cell viability versus experimental trials using MTT	187
	assay against T47D cell line. Data was shown as Mean \pm SD and	
	statistically analyzed by one way ANOVA followed by tukey's	
	post hoc test. $P^a \leq 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. exemestane was considered	
	to be statistically insignificant.	
4.48	Percentage cell viability versus experimental trials using MTT	188
	assay against A549 cell line. Data was shown as Mean \pm SD and	
	statistically analyzed by one way ANOVA followed by tukey's	
	post hoc test. $P^a \leq 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. doxorubicin was considered	
	to be statistically insignificant	
4.49	Percentage cell viability versus experimental trials using MTT	188
	assay against HepG2 cell line. Data was shown as Mean ± SD	
	and statistically analyzed by one way ANOVA followed by	
	tukey's post hoc test. $P^a \leq 0.05$ vs. control was considered to be	
	statistically significant, $p^b \ge 0.05$ vs. doxorubicin was considered	
	to be statistically insignificant	
4.50	Cytotoxic effects of most potent compounds on normal human	189
	cells	

4.51	SAR of coumarin-quinoxaline hybrids	190
4.52	SAR of coumarin-dihydropyrimidinone hybrids	191
4.53	SAR Of coumarin-dihydropyridine hybrids	192

LIST	OF	TABLES
------	----	---------------

Table	Title of Table	Page No.
No.		
1.1	Types of cancer on the basis of tissues involved	3
4.1	Docking Scores of Designed Library of Compounds	99-101
4.2	Docking scores of best 12 coumarin-quinoxaline Hybrids	102
4.3	Various interactions revealed by best twelve designed hybrids	104-106
4.4	In silico drug like properties of best 12 designed molecules	131
4.5	ADME properties of 12 predicted best compounds	132
4.6	In silico toxicity predictions of best 12 screened compounds	133
4.7	Docking Scores of Designed Library of Compounds	134-136
4.8	Various interactions revealed by best 12 designed compounds	137-138
4.9	In silico drug like properties of best 12 designed hybrids	149
4.10	ADME properties of 12 predicted best compounds	150
4.11	In silico toxicity results for best 12 hybrid compounds	151
4.12	Docking Scores of Designed Library of Compounds	152-153
4.13	Interactions of best 12 screened Compounds	154-155
4.14	In silico drug like properties of best 12 designed hybrids	167
4.15	ADME properties of 12 predicted best compounds	168
4.16	In silico toxicity results for best 12 hybrid compounds	169
4.17	Physical characterization of coumarin-quinoxaline hybrid molecules	170-171
4.18	Physical characterization of coumarin-dihydropyrimidinone	173
	hybrids	
4.19	Physical characterization of coumarin-dihydropyridine hybrids	175
4.20	IC_{50} values of coumarin-quinoxaline hybrids against cancer	178
	and normal cell lines	
4.21	IC ₅₀ values of coumarin-dihydropyrimidinone hybrids against	182
	cancer and normal cell lines	
4.22	IC ₅₀ values of coumarin-dihydropyridine hybrids against	186
	cancer and normal cell lines	

LIST OF PUBLICATIONS

The designed 3 series of coumarin hybrid molecules has screened out compounds with significant anticancer potentials. So the strategy based on virtual screening of potent compounds utilizing molecular docking tools has been proven to be successful with good outcomes. This work will be helpful to the researchers for further exploration of these hybrids by making further modifications to their structure. Also adaptation of virtual screening approach will be helpful for the researchers to get more therapeutic benefits in less time and economic way. A few publications which have been contributed through this work are as follows:

Research Articles

Rohit Bhatia, Raj Kumar Narang, Ravindra Kumar Rawal. In silico investigation of therapeutic potentials of coumarin-quinoxaline hybrids against breast cancer, synthesis and *in vitro* activity. Indian Journal of Heterocyclic Chemistry, 2020, 30(4), 489.

Impact Factor: 0.339 Indexing: SCIE, SCOPUS.

Rohit Bhatia, Raj Kumar Narang, Ravindra Kumar Rawal. Coumarindihydropyrimidinone hybrids: design, virtual screening, synthesis and cytotoxic activity against breast cancer. *Journal of Advanced Scientific Research*, 2020, 11(3), 220-233. Indexing: UGC Care List.

Review Articles

Rohit Bhatia, Shelly Pathania, Virender Singh, R.K. Rawal. Metal catalyzed synthetic strategies toward coumarin derivatives. *Chemistry of Heterocyclic compounds*, 2018, 54 (3), 280-291.

Indexing: SCIE, SCOPUS Impact Factor: 1.27

 Rohit Bhatia, R. K. Rawal. Coumarin Hybrids: Promising Scaffolds in the Treatment of Breast Cancer. *Mini Reviews in Medicinal Chemistry*, 2019, 19(17), 1443-1458.

Indexing: SCIE, SCOPUS Impact Factor: 3.86

LIST OF ABBREVIATIONS

%	Percentage
μΜ	Micro molar
¹³ CNMR	Carbon nuclear magnetic resonance
¹ HNMR	Proton nuclear magnetic resonance
2D	Two dimensional
3D	Three diamensional
Å	Angstrom
abs	Absorbance
ADME	Absorption, distribution, metabolism and
	excretion
ANOVA	Analysis of variance
BBB	Blood brain barrier
CDCl ₃	Deuterated chloroform
CHCl ₃	Chloroform
Cm ⁻¹	Centimeter inverse
d	Doublet
dd	Doublet of doublet
DMSO	Dimethyl sulphoxide
EGFR	Epidermal growth factor receptor
FTIR	Fourier transform infra red
g	Gram
h	Hour
HER2	Human epidermal growth factor-2
HRMS	High resolution mass spectrometry
HSP90	Heat shock protein
Hz	Hertz
IC 50	Half maximal inhibitory concentration
IGF-1	Insulin like growth factor
IR	Infra red
m	Multiplet
M.P.	Melting point

m/z	Mass/charge
МеОН	Methanol
mg	Milligram
mL	Millilitre
MOE	Molecular operating environment
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-
	di <u>phenyl</u> tetrazolium bromide
NT	Not tested
°C	Degree Celsius
PDB	Protein data bank
ppm	Parts per million
RCSB	Research Collaboratory for Structural
	Bioinformatics
R _f	Retardation Factor
RMSD	Root mean square deviation
S	Singlet
SAR	Structural activity relationship
t	Triplet
TLC	Thin layer chromatography
TNF-α	Tissue necrosis factor-α
WHO	World Health Organization
δ	Chemical shift value