Chapter 4

Results and Discussion

CHAPTER 4: RESULTS AND DISCUSSION

4.1 In silico screening studies

4.1.1 Molecular docking of coumarin-quinoxaline hybrids

Molecular docking studies of designed molecules were carried out against human aromatase (PDB Id: 3S7S) and human epidermal growth receptor-2 (PDB Id: 3WSQ) in order to evaluate the binding patterns of the molecules with the receptor. Various docking scores of designed molecules RB1-RB90 (Figure 4.1) calculated by MOE software against both the protein IDs have been displayed in Table 4.1. The docking protocol was validated by re-docking of internal ligand over the co-crystallized ligand and the RMSD value was found to be 0.34. The docking scores of all the designed hybrids were compared to the standard drugs Exemestane (aromatase inhibitor) and Trastuzumab (HER2 inhibitor).

Figure 4.1: Designed compounds RB1-RB90

Compound No.	R ₁	\mathbf{R}_2	R ₃	Docking Score (PDB	Docking Score
				Id: 3S7S)	(PDB Id:
					3WSQ)
RB1	Н	Н	Н	-7.63	-6.99
RB2	Н	Н	4-CH ₃	-7.12	-6.82
RB3	Н	Н	4-F	-7.28	-6.72
RB4	Н	Н	4-CF ₃	-7.04	-6.98
RB5	Н	Н	4,5-(CH ₃) ₂	-6.99	-6.63
RB6	Н	Н	3-OCH ₃	-6.82	-6.12
RB7	Н	Н	3,4-	-7.18	-6.28
			$(OCH_3)_2$		
RB8	Н	Н	4-C1	-6.72	-6.04
RB9	Н	Н	4-Br	-6.98	-5.98
RB10	Н	Н	4-NO ₂	-7.14	-5.76
RB11	OCH ₃	Н	Н	-7.22	-5.78
RB12	OCH ₃	Н	3-CH ₃	-7.28	-5.92
RB13	OCH ₃	Н	4-F	-8.72	-7.48
RB14	OCH ₃	Н	4-CF ₃	-8.92	-7.58

Table 4.1: Docking scores of designed library of compounds

221	0.077				
RB15	OCH ₃	H	2,3-(CH ₃) ₂	-7.69	-7.26
RB16	OCH ₃	Н	3-OCH ₃	-8.68	-7.76
RB17	OCH ₃	Н	3,4-	-8.82	-7.68
			$(OCH_3)_2$		
RB18	OCH ₃	Н	4-C1	-8.42	-7.44
RB19	OCH ₃	Н	4-Br	-8.66	-7.52
RB20	OCH ₃	Н	4-NO ₂	-8.12	-7.13
RB21	OH	Н	Н	-7.96	-6.88
RB22	OH	Н	4-CH ₃	-7.88	-6.08
RB23	OH	Н	4-F	-7.62	-6.38
RB24	OH	Н	4-CF ₃	-7.74	-6.22
RB25	OH	Н	4,5-(CH ₃) ₂	-7.19	-5.76
RB26	OH	Н	3-OCH ₃	-7.32	-5.89
RB27	OH	Н	3,4-	-8.02	-5.98
			(OCH ₃) ₂		
RB28	OH	Н	4-C1	-7.84	-6.48
RB29	OH	Н	4-Br	-7.86	-6.56
RB30	OH	Н	4-NO ₂	-7.12	-5.42
RB31	C ₆ H ₅	Н	Н	-6.78	-5.12
RB32	C ₆ H ₅	Н	4-CH ₃	-6.98	-5.08
RB33	C ₆ H ₅	Н	4-F	-7.42	-6.14
RB34	C ₆ H ₅	Н	4-CF ₃	-7.56	-6.66
RB35	C ₆ H ₅	Н	4,5-(CH ₃) ₂	-7.96	-6.92
RB36	C ₆ H ₅	Н	3-OCH ₃	-8.76	-7.98
RB37	C ₆ H ₅	Н	3,4-	-7.98	-6.88
			(OCH ₃) ₂		
RB38	C ₆ H ₅	Н	4-C1	-6.72	-5.62
RB39	C ₆ H ₅	Н	4-Br	-6.88	-5.87
RB40	C ₆ H ₅	Н	4-NO ₂	-6.78	-5.73
RB41	Н	CH ₃	Н	-7.22	-6.42
RB42	Н	CH ₃	4-CH ₃	-7.16	-6.26
RB43	Н	CH ₃	4-F	-7.62	-6.60
RB44	Н	CH ₃	4-CF ₃	-7.76	-6.86
RB45	Н	CH ₃	4,5-(CH ₃) ₂	-7.82	-7.82
RB46	Н	CH ₃	3-OCH ₃	-7.89	-7.89
RB47	Н	CH ₃	3,4-	-7.66	-7.66
			(OCH ₃) ₂		
RB48	Н	CH ₃	4-C1	-6.18	-6.18
RB49	Н	CH ₃	4-Br	-6.99	-6.99
RB50	Н	CH ₃	4-NO ₂	-6.76	-6.76
RB51	CH ₃	CH ₃	Н	-6.56	-6.56
RB52	CH ₃	CH ₃	4-CH ₃	-6.65	-6.65
		•	•	•	•

RB53	CH ₂	CH ₂	4-F	-6 79	-6 79
RB54	CH ₃	CH ₃	4-CF ₃	-7.13	-6.52
RB55	CH ₃	CH ₃	4.5-(CH ₃) ₂	-7.14	-5.74
RB56	CH ₃	CH ₃	3-OCH ₃	-7.78	-6.67
RB57	CH ₃	CH ₃	3.4-	-7.84	-6.72
	5	5	$(OCH_3)_2$		
RB58	CH ₃	CH ₃	4-Cl	-7.04	-5.18
RB59	CH ₃	CH ₃	4-Br	-7.08	-5.62
RB60	CH ₃	CH ₃	4-NO ₂	-7.16	-5.98
RB61	OH	CH ₃	Н	-5.99	-5.12
RB62	OH	CH ₃	4-CH ₃	-6.14	-5.13
RB63	OH	CH ₃	4-F	-6.13	-5.02
RB64	OH	CH ₃	4-CF ₃	-6.34	-5.16
RB65	OH	CH ₃	4,5-(CH ₃) ₂	-6.42	-5.34
RB66	OH	CH ₃	3-OCH ₃	-6.98	-5.72
RB67	OH	CH ₃	3,4-	-7.02	-6.14
			$(OCH_3)_2$		
RB68	OH	CH ₃	4-Cl	-6.86	-5.78
RB69	OH	CH ₃	4-Br	-6.82	-5.72
RB70	OH	CH ₃	4-NO ₂	-6.92	-5.88
RB71	Н	OCH ₃	Н	-6.73	-5.64
RB72	Н	OCH ₃	4-CH ₃	-6.98	-5.34
RB73	Н	OCH ₃	4-F	-8.02	-6.78
RB74	Н	OCH ₃	4-CF ₃	-7.88	-6.62
RB75	Н	OCH ₃	4,5-(CH ₃) ₂	-7.14	-5.67
RB76	Н	OCH ₃	3-OCH ₃	-7.26	-5.99
RB77	Н	OCH ₃	3,4-	-7.98	-6.12
			$(OCH_3)_2$		
RB78	Н	OCH ₃	4-C1	-7.24	-5.78
RB79	Н	OCH ₃	4-Br	-7.12	-5.42
RB80	Н	OCH ₃	4-NO ₂	-7.24	-5.48
RB81	OH	OCH ₃	Н	-7.98	-5.93
RB82	OH	OCH ₃	4-CH ₃	-7.73	-5.78
RB83	OH	OCH ₃	4-F	-7.76	-5.52
RB84	OH	OCH ₃	4-CF ₃	-7.89	-5.79
RB85	OH	OCH ₃	$4,5-(CH_3)_2$	-7.56	-5.86
RB86	OH	OCH ₃	$3-OCH_3$	-9.21	-7.31
RB87	OH	OCH ₃	3,4-	-8.14	-6.99
			(OCH ₃) ₂		
RB88	OH	OCH ₃	4-Cl	-8.12	-6.88
RB89	OH	OCH ₃	4-Br	-8.06	-6.76
RB90	OH	OCH ₃	4-NO ₂	-8.16	-6.18

Exemestane		-9.18	
Trastuzumab			-7.38

Among the ninety designed molecules, twelve (RB13-14, RB16-19, RB36-37, RB86-89) displayed maximum docking scores which were comparable to the standard drugs (Table 4.2). These twelve were predicted to have maximum inhibitory potentials against both the receptors. The selected twelve hybrid molecules were further analysed for the binding patterns within the cavities of the receptors. Various interactions displayed by the twelve best compounds at particular distances, have been depicted in Table 4.3. The interaction poses of best six compounds against PDB Id:3S7S and for PDB Id: 3WSQ have been presented in Figures 4.2 to 4.15. The main amino residues involved in bonding in the pocket of aromatase were Val370, Met311, Gly439, Met303, Ala307 and Ser314 whereas in the pocket of HER2 Val164, Arg143, Pro41, Pro172, Ala173, Gly42, Ala85, Glu162 and Tyr181. The major interaction types were hydrogen bonding, arene-cation and arene-H interactions. It is evident that the pattern of binding in case of standard drug Exemestane involved similar amino acid residues and functional groups as in case of best compounds against aromatase (Figure 4.16). The same trend was observed in case of HER2 receptor where the standard drug Trastuzumab was used (Figure 4.17). The overlay pose of internal ligand of aromatase and re-docked ligand has been depicted in Figure 4.18.

Compound	R ₁	R ₂	R ₃	Docking Score (3S7S)	Docking Score (3WSQ)
RB13	CH_3	Н	4-F	-8.72	-7.48
RB14	CH ₃	Н	4-CF ₃	-8.92	-7.58
RB16	CH ₃	Н	3-OCH ₃	-8.68	-7.76
RB17	CH ₃	Н	3,4-(OCH ₃) ₂	-8.82	-7.68
RB18	CH ₃	Н	4-Cl	-8.42	-7.44
RB19	CH ₃	Н	4-Br	-8.66	-7.52
RB36	C_6H_5	Н	3-OCH ₃	-8.76	-7.98
RB37	C_6H_5	Н	3,4-(OCH ₃) ₂	-7.98	-7.28

 Table 4.2: Docking scores of best 12 coumarin-quinoxaline Hybrids

RB86	OH	OCH ₃	3-OCH ₃	-9.21	-7.31
RB87	OH	OCH ₃	3,4-(OCH ₃) ₂	-8.14	-6.99
RB88	ОН	OCH ₃	4-Cl	-8.12	-6.88
RB89	OH	OCH ₃	4-Br	-8.06	-6.96
Exemestane				-9.18	
Trastuzumab					-7.38

Table 4.3: Various interactions revealed by best twelve designed hybrids

Compound	Docki	ng	Type of Interac	tions & Distances
	Scores	5		
	3878	3WSQ	3878	3WSQ
RB13	-8.72	-7.48	Val370 (H-bond with	Val164 (Arene-H
			=O; 2.41Å), Ser314(H-	interaction), Pro41 (Two
			bond with =O; 3.96\AA),	arene-cation interactions),
			Met311(H-bond with –	Val164 (H-bond with NH;
			NH; 2.19Å), Gly439(H-	2.83Å), Val164 (H-bond
			bond with N; 3.79Å),	with N; 3.03Å), Arg143
			Met303(Bond between S	(H-bond with NH; 3.40Å),
			and H; 3.80Å),	Arg143 (H-bond with NH;
			Gly439(Two Arene-H	3.62Å), Arg143 (H-bond
			interactions)	with N; 4.22Å)
RB14	-8.92	-7.58	Met311(H-bond with –	Valine174(Two Arene-H
			NH; 2.64Å),	interactions), Leu175(H
			Gly439(Two Arene-H	bond with N; 3.67Å),
			interactions),	Ala173(H bond with NH;
			Met303(Bond between S	3.88Å), Pro172(H bond
			and H; 3.95Å),	with NH; 4.76Å)
			Gly439(H bond with N;	
			3.65Å), Met364(H bond	
			with =O; 2.93Å),	
			Val370(H-bond with O;	
			4.40Å), Ala307(H-bond	

			with N; 4.64Å)	
RB16	-8.68	-7.76	Val370(H-bond with	Arg143 (Two arene-cation
			=O; 2.17Å), Val370(H-	interactions), Thr165(H-
			bond with =O; 2.54 Å),	bond with -NH; 3.67Å),
			Met311(H-bond with –	Val164(H bond with N;
			NH; 2.05Å),	3.33Å), Gly42(H bond
			Gly439(Arene-H	with N; 3.99Å), Ala85(H
			interaction), Gly439(H	bond with =O; 3.59Å),
			bond with N; 3.92Å),	Arg143 (H-bond with -
			THR310(H-bond with –	NH; 2.86Å)
			NH; 4.10Å), Ser314(H-	
			bond with O; 3.86Å)	
RB17	-8.82	-7.68	Met311(H-bond with –	Valine174(Two Arene-H
			NH; 2.24Å), Ala307(H-	interactions), Ala173(H-
			bond with =O; 3.24 Å),	bond with -NH; 3.47Å),
			Gly439(H bond with O;	Val164(H-bond with O;
			3.81Å), Val370(H bond	2.47Å), Glu162(H-bond
			with O; 4.62Å)	with O; 4.46Å),
				Tyr181(H-bond with O;
				3.68Å)
RB18	-8.42	-7.44	Met311(H-bond with –	Valine174(Two Arene-H
			NH; 2.46Å),	interactions), Leu175(H-
			Ser314(Bond between H	bond with N; 2.47Å),
			and Cl; 3.19Å),	Ala173(H-bond with –
			Met303(Bond between S	NH; 3.98Å),
			and H; 3.72Å),	
			Ala307(H bond with =O;	
			3.55Å)	
RB19	-8.66	-7.52	Gly439(Two Arene-H	Valine174(Two Arene-H
			interactions), Met311(H-	interactions), Val164(H-
			bond with –NH; 2.37Å),	bond with Br; 2.48Å),
			Met303(Bond between S	Ala173(H-bond with –
			and H; 3.86Å),	NH; 3.972Å), Leu175(H-

			Gly439(H bond with N;	bond with N; 3.79Å),
			3.72Å), Val370(H bond	Tyr181(H-bond with $=O$;
			with =O; 2.73Å)	3.60Å),
RB36	-8.76	-7.98	Met311(H-bond with –	Pro8(Arene-H
			NH; 2.26Å),	interaction), Gly44(H
			Met303(Bond between S	bond with =O; 4.19 Å),
			and H; 4.05Å),	Arg143(H bond with N;
			Thr310(Arene-H	2.96Å), Gln167(H bond
			interaction), Ala307(H	with O; 3.15Å)
			bond with =O; 4.45Å)	
RB37	-7.98	-7.28	Met311(H-bond with –	Pro8(Arene-H
			NH; 2.36Å),	interaction), Gly44(H
			Met303(Bond between S	bond with =O; 4.29Å),
			and H; 4.15Å),	Arg143(H bond with N;
			Thr310(Arene-H	2.67Å),
			interaction),	
RB86	-9.21	-7.31	Met311(H-bond with	Thr43(H bond with NH;
			NH; 2.19Å),	2.42Å), Ala4(H bond with
			Met303(Bond between S	OH; 1.79Å), Tyr95(H
			and H; 3.75Å),	bond with N; 2.98Å),
			Ser199(H bond with =O;	Gly42(H bond with O;
			3.1Å), Ala307(H bond	3.81Å), Gln43(H bond
			with O; 3.46Å),	with =O; 3.92Å)
			Ser314(H bond with O;	
			2.66Å), Ala438(H bond	
			with O; 3.66Å)	
RB87	-8.14	-6.99	Met311(H-bond with	Thr43(H bond with NH;
			NH; 2.19Å),	2.42Å), Ala4(H bond with
			Met303(Bond between S	OH; 1.79Å), Ala173(H-
			and H; 3.75Å),	bond with -NH; 3.98Å),
			Ser199(H bond with =O;	Glu162(H-bond with O;
			3.1Å)	4.46Å), Tyr181(H-bond
				with O; 3.68Å)

RB88	-8.12	-6.88	Met311(H-bond with	Thr43(H bond with NH;
			NH; 2.19Å),	2.42Å), Ala4(H bond with
			Met303(Bond between S	OH; 1.89Å), Ala173(H-
			and H; 3.75Å),	bond with –NH; 3.98Å),
			Ser199(H bond with =O;	
			3.1Å), Ser314(Bond	
			between H and Cl;	
			3.12Å)	
RB89	-8.06	-6.96	Met311(H-bond with	Thr43(H bond with NH;
			NH; 2.29Å),	2.42Å), Ala4(H bond with
			Met303(Bond between S	OH; 1.73Å), Val164(H-
			and H; 3.53Å),	bond with Br; 2.48Å),
			Ser199(H bond with =O;	
			3.12Å), Val370(H bond	
			with =O; 2.73Å)	
Exemestane	-9.18		Met374(H bond with	
			=O; 1.97Å), Arg115(H	
			bond with =O; 2.67 Å),	
			Ala306(H bond with =O;	
			4.30Å)	
Trastuzumab		-7.38		Val164(Arene-H
				interaction), Val164(H-
				bond with NH;
				2.02Å),Arg143(Arene-
				cation interaction),
				Arg143(H-bond with O;
				2.33Å), Glu166(H bond
				with OH; 1.88Å),
				Ser163(H bond with NH;
				2.30Å)

(a)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 107

Figure 4.2: Interaction poses of compound RB13 with aromatase (a) 2D interactions (b) RB13 embedded in receptor pocket (c) Interactions along with distances

Figure 4.3: Interaction poses of compound RB13 with HER2 (a) 2D interactions (b) RB13 embedded in receptor pocket (c) Interactions along with distances

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 110

(a)

Figure 4.4: Interaction poses of compound RB14 with Aromatase (a) 2D interactions (b) RB14 embedded in receptor pocket (c) Interactions along with distances

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 112

Figure 4.5: Interaction poses of compound RB14 with HER2 (a) 2D interactions (b) RB14 embedded in receptor pocket (c) Interactions along with distances

Compound RB16

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 113

Figure 4.6: Interaction poses of compound RB16 with Aromatase (a) 2D interactions (b) RB16 embedded in receptor pocket (c) Interactions along with distances

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 115

Figure 4.7: Interaction poses of compound RB16 with HER2 (a) 2D interactions (b) RB16 embedded in receptor pocket (c) Interactions along with distances

(b)

Figure 4.8: Interaction poses of compound RB17 with Aromatase (a) 2D interactions (b) RB17 embedded in receptor pocket (c) Interactions along with distances

(a)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 118

(c)

Figure 4.9: Interaction poses of compound RB17 with HER2 (a) 2D interactions (b) RB17 embedded in receptor pocket (c) Interactions along with distances

(b)

Figure 4.10: Interaction poses of compound RB18 with Aromatase (a) 2D interactions (b) RB18 embedded in receptor pocket (c) Interactions along with distances

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 121

Figure 4.11: Interaction poses of compound RB18 with HER2 (a) 2D interactions (b) RB18 embedded in receptor pocket (c) Interactions along with distances

(b)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 123

Figure 4.12: Interaction poses of compound RB36 with Aromatase (a) 2D interactions (b) RB36 embedded in receptor pocket (c) Interactions along with distances

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 124

Entry: 1/5 mol: RB36.mol

Figure 4.13: Interaction poses of compound RB36 with HER2 (a) 2D interactions (b) RB36 embedded in receptor pocket (c) Interactions along with distances

(b)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 126

Figure 4.14: Interaction poses of compound RB86 with Aromatase (a) 2D interactions (b) RB86 embedded in receptor pocket (c) Interactions along with distances

(a)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 127

Figure 4.15: Interaction poses of compound RB86 with HER2 (a) 2D interactions (b) RB86 embedded in receptor pocket (c) Interactions along with distances

Exemestane

Figure 4.16: Interaction poses of exemestane with Aromatase (a) 2D interactions (b) Interactions along with distances

Trastuzumab

Figure 4.17: Interaction poses of trastuzumab with HER2 (a) 2D interactions (b) Interactions along with distances

Validation of docking protocol

Figure 4.18: Overlay of internal ligand (red) of aromatase and re-docked ligand (blue)

4.1.2 Drug likeliness prediction of coumarin-quinoxaline hybrids

Drug likeliness prediction is a significant qualitative approach in drug design to predict that how "drug like" a compound is. These properties can be controlled by medicinal chemists during drug design and are directly related to characteristics of the drug like bioavailability. In silico drug likeliness prediction of best twelve designed molecules was carried out using Swiss ADME predictor as depicted in Table 4.4. Percentage absorption (% ABS) was calculated by using formula %ABS = 109- (0.345×TPSA). The designed potent analogues displayed good absorption in the range of 76.5-82.77%. Results revealed that designed potent analogues showed no violation of Lipinski's Rule of Five. These predictions suggested that designed analogues can be utilized to develop drug like candidates. The predicted drug likeliness properties of screened twelve compounds were within the acceptable ranges of all parameters and showed no-violations according to Lipinski's rule of five (Lipinski et al., 2012). Log P is an indicator of lipophilicity and the compounds have displayed a log P value of less than 4 indicating the good penetration properties across the cell membrane. Molecular weight was below 500 which reveal good transport, diffusion and absorption properties. The number of rotatable bonds was between 1-3 describing good oral

bioavailability. The molecular polar surface area is the sum of surface of the polar atoms inside a molecule. This area is inversely proportional to the % absorption of the designed molecule indicating good bioavailability. These overall predictions suggest that the designed molecule could act as potential drug like candidates.

Compound	TPSA ^a	MW ^b	RoB ^c	HBD ^d	HBA ^e	IlogP	logS	%
						(MlogP)		ABS ⁿ
Rule	≤140	≤500	≤10	≤5	≤10	≤5	>-4	-
RB13	77.10	337.30	1	1	6	2.60	-4.98	82.39
RB14	77.10	387.31	2	1	8	2.82	-5.55	82.39
RB16	86.33	349.34	2	1	6	2.91	-4.81	79.21
RB17	95.56	379.37	3	1	7	3.09	-4.93	76.03
RB18	77.10	353.76	1	1	5	2.75	-5.31	78.24
RB19	77.10	398.21	1	1	5	2.86	-5.51	82.39
RB36	77.10	395.41	2	1	5	3.26	-7.17	82.39
RB37	86.33	425.44	3	1	6	3.40	-7.28	80.28
RB86	95.56	379.37	3	1	7	2.94	-5.15	76.03
RB87	115.79	395.37	3	2	8	2.38	-4.56	78.62
RB88	97.33	369.76	1	2	6	2.25	-4.94	74.46
RB89	97.33	414.21	1	2	6	2.39	-5.14	82.14

Table 4.4: In silico drug like properties of best 12 designed molecules

Abbreviations:^aTopological polar surface area; ^bMolecular weight; ^cNumber of rotatable bonds; ^d Number of hydrogen bond donors; ^eNumber of hydrogen bonds acceptors; ^f Logarithm of compound partition coefficient between n-octanol and water; ^gLogarithm of water solubility; ^hPercentage absorption

4.1.3 ADME prediction studies of coumarin-quinoxaline hybrids

Pharmacokinetic profile of a drug is of utmost significance to approve it as a suitable therapeutic candidate. Many drugs cannot fulfil the favourable pharmacokinetics and get failed in clinical trials. The preliminary screening of ADME properties of designed drugs is a useful approach in order to save time, cost as well as the risk of failure. *In silico* ADME properties of best twelve compounds were predicted using preADMET tool version 2.0 software

(preadmet.bmdrc.kr). The calculated values of absorption through various barriers were found within the standard limits for all the twelve compounds. Human intestinal absorption value greater than 80% suggests that the compound is well absorbed through intestine. Lower value of BBB from 0.14-0.90 reveals that the compound cannot cross the blood brain barrier. Caco2 value between 4 to 70 represents moderate absorption, greater than 70 suggests maximum absorption. The potent compounds with lower MDCK value indicate lower absorption towards kidney cells. Plasma protein binding greater than 85 indicates best distribution properties of potent compounds. The predicted data has been compiled in Table 4.5.

Compound	HIA%	Caco-	MDCK	BBB (log PS)	Plasma
		2(nm/sec)		<0.4	protein
					binding
					(%)
RB13	96.87	23.62	2.32	0.19	90.85
RB14	96.56	21.64	1.68	0.07	93.71
RB16	96.93	28.80	2.78	0.16	70.78
RB17	97.36	30.97	3.92	0.10	58.62
RB18	94.26	18.78	3.18	0.10	60.12
RB19	96.32	22.58	0.30	0.23	76.19
RB36	96.46	38.18	3.26	0.16	95.12
RB37	94.28	28.32	2.96	0.16	86.74
RB86	93.72	18.12	4.18	0.10	53.25
RB87	92.18	20.14	4.02	0.12	55.28
RB88	96.34	20.46	3.28	0.10	58.42
RB89	92.44	21.92	3.48	0.10	58.82

Table 4.5: ADME properties of 12 predicted best compounds

4.1.4 Toxicity prediction studies of coumarin-quinoxaline hybrids

A therapeutic drug is of no use if it is toxic to other parts of the body although it is effective against particular ailment. So a preliminary idea about the toxicity of a designed molecule is highly useful to avoid failure of it during clinical stages.
Toxicity profiling of a drug directly ensures the safety profile of a particular drug. The prediction of toxicity was carried out by PreADME and PROTOX softwares. Protox predictions revealed that the designed compounds lie in Class 4 with LD50 value >900 mg/kg which is much higher dose to be toxic. Rodent toxicity tests for Carcino-Mouse and Carcino-Rat were positive which means there is no evidence of carcinogenic toxicity. Medium risk for hERG inhibition indicates that designed analogues have minimum risk on cardiac action potential. The obtained results from both the sotwares have been presented in Table 4.6. From the data, it can be concluded that the designed molecules are safe to be used as a drug.

Compound	Carcino-	Carcino-	HERG-	Protox	Protox
	Mouse	Rat	inhibition	Predicted	Predicted
				LD50	Class
RB13	Positive	Positive	Medium risk	1050 mg/kg	Class 4
RB14	Positive	Positive	Medium risk	920 mg/kg	Class 4
RB16	Positive	Positive	Medium risk	920 mg/kg	Class 4
RB17	Positive	Positive	Medium risk	1000 mg/kg	Class 4
RB18	Positive	Positive	Medium risk	1050 mg/kg	Class 4
RB19	Positive	Positive	Medium risk	1050 mg/kg	Class 4
RB36	Positive	Positive	Medium risk	1000 mg/kg	Class 4
RB37	Positive	Positive	Medium risk	1000mg/kg	Class 4
RB86	Positive	Positive	Medium risk	1000mg/kg	Class 4
RB87	Positive	Positive	Medium risk	1000mg/kg	Class 4
RB88	Positive	Positive	Medium risk	920 mg/kg	Class 4
RB89	Positive	Positive	Medium risk	920 mg/kg	Class 4

Table 4.6: In silico toxicity predictions of best 12 screened compounds

4.1.5 Molecular docking studies of coumarin-dihydropyrimidone hybrids

The designed compounds (CD1-CD90) were subjected to molecular docking against human aromatse (PDB Id: 3S7S) using MOE software (Figure 4.19). Maximum compounds get fit inside the pocket of aromatase. Various docking scores displayed by the designed compounds have been displayed in Table 4.7. The docking protocol validated and RMSD value was found to be 0.42. The docking results were compared with marketed well established aromatase inhibitor drug exemestane. Among fifty designed molecules, twelve displayed excellent docking scores among the whole library of compounds. These twelve were estimated to possess maximum aromatase inhibitory potentials among all designed molecules. These best twelve compounds were further analysed with the help of 2D and 3D binding poses to study the fitting capability inside the receptor, type of interactions involved with the receptor and distance of interactions between compounds and receptor.

Figure 4.19: Designed compounds (CD1-CD90)

Compound	R ₁	R ₂	Docking Scores (PDB Id: 3878)
CD1	Н	Н	-9.18
CD2	Н	4-OH	-9.32
CD3	Н	4-CH ₃	-8.68
CD4	Н	4-OCH ₃	-8.23
CD5	Н	4-Cl	-8.62
CD6	2-OCH ₃	4-OH	-10.86
CD7	2-OCH ₃	4-CH ₃	-9.16
CD8	2-OCH ₃	4-OCH ₃	-11.32
CD9	2-OCH ₃	4-Cl	-10.22
CD10	2-OCH ₃	4-F	-10.32
CD11	2-OH	4-OH	-8.11
CD12	2-OH	4-CH ₃	-8.78
CD13	2-OH	4-OCH ₃	-8.12
CD14	2-OH	4-Cl	-8.46
CD15	2-OH	4-F	-7.92
CD16	2-Cl	4-OH	-7.36
CD17	2-Cl	4-CH ₃	-7.42
CD18	2-Cl	4-OCH ₃	-7.88
CD19	2-Cl	4-Cl	-10.92
CD20	2-Cl	4-F	-11.08
CD21	2-Br	4-OH	-7.32
CD22	2-Br	4-CH ₃	-7.58
CD23	2-Br	4-OCH ₃	-7.12

Table 4.7: Docking scores of designed library of compounds

CD24	2-Br	4-C1	-7 16
CD25	2-Br	4-F	-7.62
CD26	2-Br	4-Br	-7.36
CD27	2-NO ₂	4-OH	-9.27
CD28	$2-NO_2$	4-CH ₃	-11.46
CD29	2-NO ₂	4-OCH ₃	-8.56
CD30	2-NO ₂	4-Cl	-8.14
CD31	2-NO ₂	4-F	-8.31
CD32	2-NO ₂	4-Br	-9.41
CD33	2-NH ₂	4-OH	-9.47
CD34	2-NH ₂	4-CH ₃	-8.81
CD35	2-NH ₂	4-OCH ₃	-8.67
CD36	2-NH ₂	4-Cl	-8.08
CD37	2-NH ₂	4-F	-8.18
CD38	2-NH ₂	4-Br	-8.38
CD39	2-CH ₃	4-OH	-8.96
CD40	2-CH ₃	4-CH ₃	-9.08
CD41	2-CH ₃	4-OCH ₃	-9.17
CD42	2-CH ₃	4-Cl	-9.36
CD43	2-CH ₃	4-F	-10.08
CD44	2-CH ₃	4-NH ₂	-10.78
CD45	2-F	4-OH	-9.77
CD46	2-F	4-CH ₃	-9.12
CD47	2-F	$4-OCH_3$	-9.56
CD48	2-F	4-Cl	-9.02
CD49	2-F	4-F	-9.78
CD50	2-F	4-Br	-9.24
CD31	С6П5	П	-0.78
CD52	C ₆ H ₅	4-CH ₃	-6.98
CD53	C ₆ H ₅	4-F	-7.42
CD54	C_6H_5	4-CF ₃	-7.56
CD55	C_6H_5	4,5-(CH ₃) ₂	-7.96
CD56	C ₆ H ₅	3-OCH ₃	-8.76
CD57	C ₆ H ₅	3,4-(OCH ₃) ₂	-7.98
CD58	C ₆ H ₅	4-Cl	-6.72
CD59	C ₆ H ₅	4-Br	-6.88
CD60	C ₆ H ₅	4-NO ₂	-6.78
CD61	C ₆ H ₅	Н	-6.78
CD62	C ₆ H ₅	4-CH ₃	-6.98
CD63	Н	4-Br	-7.12
CD64	Н	4-NO ₂	-6.96
CD65	Н	4-F	-7.08
CD66	Н	4-CF ₃	-7.22
CD67	Н	3,4-OCH ₃	-6.58
CD68	3-Cl	4-OH	-7.16
CD69	3-Cl	4-CH ₃	-7.12

	1	r	1
CD70	3-Cl	4-OCH ₃	-7.18
CD71	3-Cl	$4-NO_2$	-6.92
CD72	3-Cl	4-Br	-8.08
CD73	3-OH	4-NO ₂	-7.11
CD74	3-ОН	4-Cl	-7.78
CD75	3-ОН	3,4-OCH ₃	-6.42
CD76	3-ОН	4-Br	-6.46
CD77	3-ОН	4-NH ₂	-6.92
CD78	3-NH ₂	4-NO ₂	-9.47
CD79	3-NH ₂	4-CH ₃	-6.81
CD80	3-NH ₂	3,4-OCH ₃	-7.67
CD81	3-NH ₂	4-Cl	-7.16
CD82	3-NH ₂	4-CF ₃	-7.28
CD83	3-NH ₂	4-Br	-6.38
CD84	3-NH ₂	4-OH	-6.57
CD85	3-NH ₂	4-OCH ₃	-6.81
CD86	3-CH ₃	4-NH ₂	-6.96
CD87	3-CH ₃	4-OCH ₃	-7.08
CD88	3-CH ₃	3,4-OCH ₃	-8.17
CD89	3-CH ₃	4-NO ₂	-7.36
CD90	3-CH ₃	4-Cl	-8.08
Exemestane			-11.28

Various interactions displayed by the best twelve hybrid molecules have been displayed in Table 4.8 along with the distances. Among these, 2D and 3D binding patterns of these six hybrid compounds have been depicted in Figures 4.20 to 4.25 whereas binding patterns of exemestane have been depicted in Figure 4.26. Compounds CD8, CD20 and CD28 revealed comparable scores to exemestane with excellent interactions at very short distances. The main amino acid residue involved in interactions were CYS437, Ala306, Val370, Thr310, Met310, Pro429, Trp341, Arg435 and 411. It was evident that the best compounds revealed almost similar binding patterns as the standard drug exemestane. The main types of interactions involved in binding were hydrogen bonding, Arene-H and side chain acceptor interactions.

Compound	Docking Score	Type of Interactions & Distances
	(PDB Id: 3S7S)	
CD6	-10.86	Phe430(Arene-H interaction), Cys435(H-bond with
		=O; 3.95Å), Val370(H-bond with O; 2.63Å),
		Pro368(H-bond with O; 2.36Å), Ala306(H-bond

		with =O; 4.51Å)				
CD8	-11.32	Ala306(Arene-H interaction), Cys437(H-bond with				
		=O; 3.34Å), Thr310(H-bond with N; 3.17Å),				
		Val370(H-bond with O; 2.83Å), Ala306(H-bond				
		with -NH; 2.23Å)				
CD9	-10.22	Phe430(Arene-H interaction), Cys435(H-bond with				
		=O; 3.75Å), Thr310(H-bond with N; 3.47Å),				
		Val370(H-bond with O; 2.37Å), Cys437(H-bond				
		with =O; 3.14Å),				
CD10	-10.32	Ala306(Arene-H interaction), Cys437(H-bond with				
		=O; 3.44Å), Cys437(Side chain acceptor interaction				
		with H; 3.95Å), Arg115(H-bond with O; 3.65Å)				
CD19	-10.92	Thr310(Arene-H interaction), Cys437(Side chain				
		acceptor interaction with H; 3.65Å), Pro429(H-bond				
		with -NH; 2.07Å), Trp341(H-bond with Cl; 2.27Å),				
		Arg115(H-bond with O; 3.65Å), Arg115(H-bond				
		with =O; 3.20Å), Val370(H-bond with -NH; 4.19Å)				
CD20	-11.08	Met303(Side chain acceptor interaction with H;				
		3.65Å),Cys437(Side chain acceptor interaction with				
		H; 3.75Å), Cys437(Side chain acceptor interaction				
		with H; 4.15Å), Arg435(H-bond with -NH; 2.74Å),				
		Arg435(H-bond with =O; 3.55Å)				
CD28	-11.46	Arg435(H-bond with =O; 2.08Å), Arg145(H-bond				
		with O; 2.21Å), Pro429(H-bond with -NH; 2.14Å),				
		Trp141(H-bond with O; 1.57Å), Val373(H-bond				
		with –NH; 4.66Å)				
CD32	-9.41	Arg145(H-bond with O; 2.29Å), Pro429(H-bond				
		with -NH; 2.37Å), Trp141(H-bond with O; 1.77Å)				
CD42	-9.36	Cys437(H-bond with =O; 3.58Å), Ala438(Arene-H				
		interaction), Arg155(H-bond with –NH; 3.88Å)				
CD43	-10.08	Cys437(Side chain acceptor interaction with H;				
		4.33Å), Cys437(H-bond with =O; 3.51Å),				
		Arg155(H-bond with –NH; 3.81Å)				

CD44	-10.78	Cys437(Side chain acceptor interaction with H;
		4.27Å), Cys437(H-bond with =O; 3.59Å),
		Ala438(Arene-H interaction), Arg155(H-bond with
		–NH; 3.38Å), Cys437(H-bond with –NH; 3.88Å)
CD49	-9.78	Arg435(H-bond with -NH; 2.74Å), Met303(Side
		chain receptor interaction with H; 3.65Å),
		Cys437(Side chain receptor interaction with H;
		4.15Å),Cys437(Side chain receptor interaction with
		H; 3.75Å)
Exemestane	-11.28	Met374(H bond with =O; 1.97Å), Arg115(H bond
		with =O; 2.63Å), Ala306(H bond with =O; 4.40Å)

Compound CD6

Figure 4.20: Interaction poses of CD6 with aromatase (a) 2D interactions (b) CD6 embedded in receptor pocket (c) Interactions along with distances

Compound CD8

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 141

(c)

Figure 4.21: Interaction poses of CD8 with aromatase (a) 2D interactions (b) CD8 embedded in receptor pocket (c) Interactions along with distances

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 142

Figure 4.22: Interaction poses of CD19 with aromatase (a) 2D interactions (b) CD19 embedded in receptor pocket (c) Interactions along with distances

Compound CD20

(b)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 144

Figure 4.23: Interaction poses of CD20 with aromatase (a) 2D interactions (b) CD20 embedded in receptor pocket (c) Interactions along with distances

Compound CD28

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as 145 Anticancer Agents

Figure 4.24: Interaction poses of CD28 with aromatase (a) 2D interactions (b) CD28 embedded in receptor pocket (c) Interactions along with distances

Compound CD44

Figure 4.25: Interaction poses of CD44 with aromatase (a) 2D interactions (b) CD44 embedded in receptor pocket (c) Interactions along with distances

Exemestane

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 148

Figure 4.26: Interaction poses of Exemestane with aromatase (a) 2D interactions (b) Interactions along with distances

4.1.6 Drug likeliness prediction of coumarin-dihydropyrimidone hybrids

Drug likeliness prediction is a promising approach to get an idea about drug like properties of designed molecules. These properties are important to predict the bioavailability of drugs and medicinal chemist can modify the factors affecting it accordingly. Drug likeliness features of best twelve compounds were predicted by using Swiss ADME predictor. Percentage absorption (% ABS) was calculated by using formula %ABS = $109-(0.345 \times TPSA)$. The designed potent analogues displayed good absorption in the range of 76.5-82.77%. Results evidenced that designed potent analogues showed no violation of Lipinski's Rule of Five as represented in Table 4.9. Hence it can be postulated that the designed molecules may serve as drug like candidates.

Compound	TPSA ^a	MW ^b	RoB ^c	HBD ^d	HBA ^e	IlogP (MlogP) ^f	logS ^g	% ABS ^h
Rule	≤140	≤500	≤10	≤5	≤10	≤5	>-4	-
CD6	117.87	406.39	4	3	6	1.30	-4.43	82.39

Table 4.9: In silico drug like properties of best twelve designed hybrids

CD8	106.87	420.41	5	2	6	1.51	-4.53	82.39
CD9	97.64	424.83	4	2	5	2.45	-4.68	75.41
CD10	97.64	408.67	4	2	6	2.31	-4.25	75.41
CD19	88.41	429.25	3	2	4	3.10	-5.52	79.21
CD20	88.41	412.80	3	2	5	2.99	-4.97	76.03
CD28	134.23	419.39	4	2	6	1.47	-5.37	82.39
CD32	134.23	484.26	4	2	6	1.64	-4.99	82.39
CD42	88.41	408.83	3	2	4	2.54	-4.91	78.49
CD43	88.41	392.28	3	2	5	2,41	-4.47	78.49
CD44	114.43	389.40	3	3	4	1.82	-4.42	82.39
CD49	88.41	396.34	3	2	6	2.05	-4.33	78.49

Abbreviations:^aTopological polar surface area; ^bMolecular weight; ^cNumber of rotatable bonds; ^d Number of hydrogen bond donors; ^eNumber of hydrogen bonds acceptors; ^f Logarithm of compound partition coefficient between n-octanol and water; ^gLogarithm of water solubility; ^hPercentage absorption

4.1.7 ADME prediction studies of coumarin-dihydropyrimidinone hybrids

In silico ADME properties of best twelve compounds were predict using preADMET tool version 2.0 software (preadmet.bmdrc.kr). The calculated values of absorption through various barriers were found within the standard limits for all the twelve compounds. Human intestinal absorption value greater than 80% suggests that the compound is well absorbed through intestine. Lower value of BBB from 0.14-0.90 reveals that the compound cannot cross the blood brain barrier. Caco2 value between 4 to 70 represents moderate absorption, greater than 70 suggests maximum absorption. The potent compounds with lower MDCK value indicate lower absorption towards kidney cells. Plasma protein binding greater than 85 indicates best distribution properties of potent compounds. The predicted data has been compiled in Table 4.10.

Compound	HIA%	Caco-	MDCK	BBB (log PS)	Plasma
		2(nm/sec)		<0.4	protein
					binding
					(%)
CD6	94.43	20.08	1.53	0.019	92.22
CD8	94.27	22.11	1.58	0.022	91.43
CD9	95.23	21.58	0.42	0.073	77.78
CD10	94.36	21.88	1.15	0.042	90.58
CD19	94.26	18.78	0.25	0.53	91.32
CD20	95.32	20.91	0.55	0.28	86.19
CD28	92.46	20.18	0.22	0.019	99.12
CD32	95.28	18.32	0.028	0.02	92.74
CD42	95.72	21.56	0.31	0.47	90.25
CD43	92.18	20.14	4.02	0.12	90.28
CD44	92.55	21.06	7.91	0.09	88.73
CD49	93.26	21.32	0.83	0.14	90.11

 Table 4.10: ADME properties of 12 predicted best compounds

4.1.8 In silico toxicity studies of coumarin-dihydropyrimidone hybrids

A preliminary idea about the toxicity of a designed molecule is of utmost importance as it may be helpful to prevent the failure of it during clinical stages. The *in silico* toxicity prediction was carried out by PreADME and PROTOX softwares. Protox suggested that designed compounds lie in Class 4 and 5 with LD50 value >900 mg/kg which is much higher dose to be toxic. Carcino-Mouse and Carcino-Rat toxicity test were found positive suggesting that there is no evidence of carcinogenic toxicity. Medium risk for hERG inhibition evidenced that designed analogues have minimum risk on cardiac action potential. The predicted data have been presented in Table 4.11. From the data, it can be concluded that the designed molecules are safe to be used as a drug.

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 151

Compound	Carcino-	Carcino-	HERG-	Protox	Protox
	Mouse	Rat	inhibition	Predicted	Predicted
				LD50	Class
CD6	Positive	Positive	Medium risk	1350 mg/kg	Class 4
CD8	Positive	Positive	Medium risk	1350 mg/kg	Class 4
CD9	Positive	Positive	Medium risk	3200 mg/kg	Class 5
CD10	Positive	Positive	Medium risk	2500 mg/kg	Class 5
CD19	Positive	Positive	Medium risk	1120 mg/kg	Class 4
CD20	Positive	Positive	Medium risk	1120 mg/kg	Class 4
CD28	Positive	Positive	Medium risk	1350 mg/kg	Class 4
CD32	Positive	Positive	Medium risk	1000 mg/kg	Class 4
CD42	Positive	Positive	Medium risk	1000 mg/kg	Class 4
CD43	Positive	Positive	Medium risk	1000 mg/kg	Class 4
CD44	Positive	Positive	Medium risk	1350 mg/kg	Class 4
CD49	Positive	Positive	Medium risk	1000 mg/kg	Class 4

 Table 4.11: In silico toxicity results for best 12 hybrid compounds

4.1.9 Molecular docking studies of coumarin-dihydropyridine hybrids

The designed compounds (DP1-DP75) (Figure 4.27) were subjected to molecular docking against human aromatse (PDB Id: 3S7S) using MOE software. Maximum compounds get fit inside the pocket of aromatase. Various docking scores displayed by the designed compounds have been displayed in Table 4.12. The docking protocol validated and RMSD value was found to be 0.28. The docking results were compared with marketed well established aromatase inhibitor drug exemestane. Among seventy five designed molecules, twelve (DP12, DP18-20, DP26-28, DP32, DP56, DP58, DP61, DP63) displayed excellent docking scores among the whole library of compounds. These twelve were estimated to possess maximum aromatase inhibitory potentials among all designed molecules. These best twelve compounds were further analysed with the help of 2D and 3D binding poses to study the fitting capability inside the receptor, type of interactions involved with the receptor and distance of interactions between compounds and receptor.

Figure 4.27: Designed coumarin-dihydropyridine hybrids (DP1-DP75)

Compound	R ₁	R ₂	Docking Scores (PDB Id: 387S)
DP1	2-OCH ₃	Н	-9.18
DP2	2-OCH ₃	4-OH	-9.32
DP3	2-OCH ₃	4-CH ₃	-8.68
DP4	2-OCH ₃	4-OCH ₃	-8.23
DP5	2-OCH ₃	4-C1	-8.62
DP6	2-OCH ₃	4-Br	-8.86
DP7	2-OCH ₃	4-CF ₃	-9.16
DP8	2-OCH ₃	4-NH ₂	-9.32
DP9	2-OCH ₃	4-C1	-8.22
DP10	2-OCH ₃	4-F	-9.32
DP11	Н	Н	-8.11
DP12	Н	4-OCH ₃	-9.78
DP13	Н	4-Br	-8.12
DP14	Н	4-CH ₃	-8.46
DP15	Н	4-Cl	-7.92
DP16	Н	4-F	-7.36
DP17	Н	4-CF ₃	-7.42
DP18	Н	4-C1	-10.78
DP19	Н	4-OH	-9.98
DP20	Н	4-NO ₂	-11.08
DP21	2-F	4-OH	-7.32
DP22	2-F	4-CH ₃	-7.58
DP23	2-F	4-OCH ₃	-7.12
DP24	2-F	4-C1	-7.16
DP25	2-F	4-NH ₂	-7.62
DP26	2-F	4-F	-10.28
DP27	2-Cl	4-Cl	-10.86
DP28	2-Cl	4-NO ₂	-11.54
DP29	2-Cl	4-OCH ₃	-8.56
DP 30	2-Cl	4-CH ₃	-8.14
DP 31	2-Cl	4-F	-8.31
DP32	2-OH	4-CH ₃	-12.68
DP33	2-OH	4-OH	-9.47
DP34	2-OH	4-CH ₃	-8.81

Table 4.12: Docking scores of designed library of compounds

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 153

DP35	2-OH	4-OCH ₃	-8.67
DP36	2-OH	4-Cl	-8.08
DP37	2-OH	4-F	-8.18
DP38	2-OH	4-Br	-8.38
DP39	2-NO ₂	4-OH	-8.96
DP40	2-NO ₂	4-CH ₃	-9.08
DP41	2-NO ₂	4-OCH ₃	-9.17
DP42	2-NO ₂	4-Cl	-9.36
DP43	2-NO ₂	4-F	-8.08
DP44	2-NO ₂	4-NH ₂	-8.78
DP45	2-Br	4-OH	-8.77
DP46	2-Br	4-CH ₃	-8.12
DP47	2-Br	$4-OCH_3$	-8.56
DP48	2-Br	4-CI	-9.02
DP49	2-Br	4-F	-8.78
DP50	2-Br	4-Br	-8.24
DP51		H	-0.78
DP52	C ₆ H ₅	4-CH ₃	-6.98
DP53	C ₆ H ₅	4-F	-7.42
DP54	C_6H_5	4-CF ₃	-7.56
DP55	C_6H_5	$4,5-(CH_3)_2$	-7.96
DP56	2-NH ₂	4-NH ₂	-9.68
DP57	2-NH ₂	3,4-(OCH ₃) ₂	-7.98
DP58	2-NH ₂	4-Cl	-9.92
DP59	2-NH ₂	4-Br	-6.88
DP60	2-NH ₂	4-NO ₂	-6.78
DP61	2-CH ₃	4-CH ₃	-9.76
DP62	2-CH ₃	4-CF ₃	-6.98
DP63	2-CH ₃	4-NH ₂	-10.64
DP64	2-CH ₃	4-NO ₂	-6.96
DP65	2-CH ₃	4-F	-7.08
DP66	2-CH ₃	4-OH	-7.22
DP67	2-CH ₃	3,4-OCH ₃	-6.58
DP68	2-Cl	4-Br	-7.16
DP69	2-Cl	4-CF ₃	-7.12
DP70	2-Cl	4-NH ₂	-7.18
DP71	2-NH ₂	4-F	-6.92
DP72	2-NH ₂	4-CF ₃	-8.08
DP73	2-NH ₂	4-CH ₃	-7.11
DP74	2-NH ₂	4-Br	-7.78
DP75	2-NH ₂	4-OCH ₃	-6.42
Exemestane	<u> </u>		-11.24

Various interactions displayed by the best twelve hybrid molecules have been displayed in Table 4.13 along with the distances. Among these, 2D and 3D binding

patterns of six hybrid compounds have been depicted in Figures 4.28 to 4.34 whereas binding patterns of exemestane have been depicted in Figure 4.35. The main amino acid residue involved in interactions were CYS437, Ala438, Arg115, Gly439, Thr310, Met311, Pro429, Trp141, and Arg435. It was evident that the best compounds revealed almost similar binding patterns as the standard drug exemestane. The main types of interactions involved in binding were hydrogen bonding, Arene-H and side chain acceptor interactions.

Compound	Docking	Type of interactions and distances		
	Scores			
	0.78	Gly/20(Arong Hinteraction) Alg/28(H hand with -O:		
DF12	-9.70	O(y+3) (Arene-H interaction), Ara438 (H-bolid with $=0$,		
		2.48A), Gly439(H-bond with =O; 4.98A), Ala306(H-bond		
		with =O; 4.20Å), Arg115(H-bond with –O; 2.48Å)		
DP18	-10.78	Trp141(Cl-H interaction; 2.40Å), Ala438(H-bond with =O;		
		2.43Å), Gly439(H-bond with =O; 2.78Å), Thr210(H-bond		
		with –O; 4.15Å)		
DP19	-9.98	Cys437(Side chain interactions at 4.32Å), Cys 4357(H-bond		
		with –N; 3.77Å), Thr310(H-bond with =O; 2.52Å)		
DP20	-11.08	Trp141(H-bond with =O; 2.60Å), Ala436(H-bond with =O;		
		3.57Å), Arg115(H-bond with –O; 1.90Å), Arg435(H-bond		
		with –O; 2.26Å)		
DP26	-10.26	Cys437(Side chain interactions at 3.55Å), Met107(Side		
		chain interactions at 4.26Å), Thr310(H-bond with -NH;		
		4.64Å), Ala443(H-bond with =O; 4.14Å),		
DP27	-10.86	Met 311(H-bond with =O; 3.93Å), Met303 & Cys437(Two		
		Side chain interactions at 3.41Å and 3.53Å), Ala 307(H-		
		bond with –O; 3.88Å)		
DP28	-11.54	Met 311(H-bond with =O; 3.28Å). Cvs437(Two Side chain		
-		interactions at 3 50Å and 3 93Å). Pro 429 (H-bond with $-N$:		
		107 Å)		
		1.9/A)		

 Table 4.13: Interactions of best twelve screened Compounds

DP32	-12.68	Ile 133(H-bond with =O; 3.66 Å), Arg 435(H-bond with –N;
		2.24Å), Ala438(H-bond with =O; 1.93Å), Phe 430(Arene-H
		interaction)
		0
DP56	-9.68	Leu372(H bond with –NH; 2.26Å), Leu477(H bond with –
		NH; 2.16Å), Thr310(H bond with =O; 3.16Å), Arg115(H
		bond with =O; 3.67Å)
DP58	-9.92	Thr310(H bond with =O; 3.26Å), Arg115(H bond with =O;
		3.61Å), Pro 429(H-bond with –N; 2.97Å)
	0.76	$O(1-420)(A_{1})$ $O(1-420)(A$
DP01	-9.76	Giy439(Arene-H interaction), Pro429(H bond with – NH;
		2.47Å), Met311(Side chain acceptor interaction, 3.65Å),
		Gly436(H bond with =O, 3.62Å)
DP63	-10.64	Ala438(H bond with =O, 2.06Å), Gly439(H bond with =O,
		2.74Å),), Leu477(H bond with –NH; 2.76Å),
Examastana	11.29	Mot 274 (U bond with $-0:107$ Å) Arg 115 (U bond with $-0:$
Exemestane	-11.28	$\operatorname{Mets}/4(\operatorname{H}\operatorname{bolid}\operatorname{with}=0; 1.9/\operatorname{A}), \operatorname{Arg115}(\operatorname{H}\operatorname{bolid}\operatorname{with}=0;$
		2.63Å), Ala306(H bond with =O; $4.40Å$)

Compound DP12

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 156

(c)

Figure 4.28: Interaction poses of DP12 with aromatase (a) 2D interactions (b) DP12 embedded in receptor pocket (c) Interactions along with distances

Compound DP18

(b)

Figure 4.29: Interaction poses of DP18 with aromatase (a) 2D interactions (b) DP18 embedded in receptor pocket (c) Interactions along with distances

Compound DP20

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 159

Figure 4.30: Interaction poses of DP20 with aromatase (a) 2D interactions (b) DP20 embedded in receptor pocket (c) Interactions along with distances

Compound DP27

(b)

Figure 4.31: Interaction poses of DP27 with aromatase (a) 2D interactions (b) DP27 embedded in receptor pocket (c) Interactions along with distances

Compound DP28

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 162

Figure 4.32: Interaction poses of DP28 with aromatase (a) 2D interactions (b) DP28 embedded in receptor pocket (c) Interactions along with distances

Compound DP32

(b)

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 164

Figure 4.33: Interaction poses of DP32 with aromatase (a) 2D interactions (b) DP32 embedded in receptor pocket (c) Interactions along with distances

Compound DP61

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 165

Figure 4.34: Interaction poses of DP61 with aromatase (a) 2D interactions (b) DP61 embedded in receptor pocket (c) Interactions along with distances

Exemestane

Figure 4.35: Interaction poses of Exemestane with aromatase (a) 2D interactions (b) Interactions along with distances

4.1.10 Drug likeliness prediction of coumarin-dihydropyridine hybrids

Drug likeliness prediction is a promising approach to get an idea about drug like properties of designed molecules. These properties are important to predict the bioavailability of drugs and medicinal chemist can modify the factors affecting it accordingly. Drug likeliness features of best twelve compounds were predicting by using Swiss ADME predictor. Percentage absorption (% ABS) was calculated by using formula %ABS = 109- (0.345×TPSA). The designed potent analogues displayed good absorption in the range of 58.5-72.8%. Results evidenced that designed potent analogues showed only one violation of Lipinski's Rule of Five as represented in Table 4.14. The molecular weights of the designed hybrid molecules were found higher than 500. But, violation of molecular weight does not makes any commitment about the fact that the molecules will not behave like drug. There several antibiotic drugs and compounds from natural origins whose molecular weights are greater than 500. Hence it can be postulated that the designed molecules may serve as drug like candidates.

Compound	TPSA ^a	MW ^b	RoB ^c	HBD ^d	HBA ^e	IlogP	logS ^g	%
						(MlogP) ^f		ABS ^h
Rule	≤140	≤500	≤10	≤5	≤10	≤5	>-4	-
DP12	115.82	559.56	6	1	7	3.16	-7.09	69.39
DP18	106.59	563.98	5	1	6	3.15	-7.60	72.22
DP19	126.46	545.54	5	2	7	2.62	-6.87	65.41
DP20	138.64	574.54	6	1	8	2.63	-7.08	61.41
DP26	106.59	583.62	5	1	9	3.16	-7.34	72.22
DP27	106.59	632.26	5	1	6	3.09	-8.07	72.22
DP28	139.23	643.59	6	1	8	3.26	-7.68	60.39
DP32	144.23	591.26	6	3	9	2.68	-6.82	59.24
DP56	146.41	574.83	5	4	6	2.44	-5.96	58.48
DP58	142.23	594.01	5	3	6	2.46	-6.91	59.93
DP61	106.59	571.62	5	1	6	3.93	-7.92	72.22
DP63	132.61	572.61	5	2	6	3.65	-7.27	63.24

 Table 4.14: In silico drug like properties of best twelve designed hybrids

Abbreviations:^aTopological polar surface area; ^bMolecular weight; ^cNumber of rotatable bonds; ^d Number of hydrogen bond donors; ^eNumber of hydrogen bonds acceptors; ^f

Logarithm of compound partition coefficient between n-octanol and water; ^gLogarithm of water solubility; ^hPercentage absorption

4.1.11 ADME prediction studies of coumarin-dihydropyrimidinone hybrids

In silico ADME properties of best twelve compounds were predict using preADMET tool version 2.0 software (preadmet.bmdrc.kr). The calculated values of absorption through various barriers were found within the standard limits for all the twelve compounds. Human intestinal absorption value greater than 80% suggests that the compound is well absorbed through intestine. Lower value of BBB from 0.14-0.90 reveals that the compound cannot cross the blood brain barrier. Caco2 value between 4 to 70 represents moderate absorption, greater than 70 suggests maximum absorption. The potent compounds with lower MDCK value indicate lower absorption towards kidney cells. Plasma protein binding greater than 85 indicates best distribution properties of potent compounds. The predicted data has been compiled in Table 4.15.

Compound	HIA%	Caco-	MDCK	BBB (log PS)	Plasma	
		2(nm/sec)		<0.4	protein	
					binding	
					(%)	
DP12	96.43	25.77	0.044	0.36	96.43	
DP18	96.27	22.95	0.044	0.17	94.43	
DP19	95.12	23.58	0.042	0.034	87.78	
DP20	98.36	18.88	0.043	0.032	93.99	
DP26	96.26	25.00	0.043	0.11	95.32	
DP27	97.32	24.19	0.55	0.16	100.00	
DP28	97.46	18.11	0.042	0.03	99.12	
DP32	94.11	20.77	0.043	0.069	89.14	
DP56	95.72	21.56	0.31	0.47	90.25	
DP58	95.21	20.84	0.043	0.062	95.69	
DP61	92.55	21.06	0.091	0.09	88.73	
DP63	96.43	21.61	1.53	0.043	88.72	

 Table 4.15: ADME properties of 12 predicted best compounds

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 169
4.1.12 In silico toxicity studies of coumarin-dihydropyrimidone hybrids

A preliminary idea about the toxicity of a designed molecule is of utmost importance as it may be helpful to prevent the failure of it during clinical stages. The *in silico* toxicity prediction was carried out by PreADME and PROTOX softwares. Protox suggested that designed compounds lie in Class 4 and 5 with LD50 value >900 mg/kg which is much higher dose to be toxic. Carcino-Mouse and Carcino-Rat toxicity test were found positive suggesting that there is no evidence of carcinogenic toxicity. Medium risk for hERG inhibition evidenced that designed analogues have minimum risk on cardiac action potential. The predicted data have been presented in Table 4.16. From the data, it can be concluded that the designed molecules are safe to be used as a drug.

Compound	Carcino-	Carcino-	HERG-	Protox	Protox
	Mouse	Rat	inhibition	Predicted	Predicted
				LD50	Class
DP12	Positive	Positive	Medium risk	3000 mg/kg	Class 5
DP18	Positive	Positive	Medium risk	1350 mg/kg	Class 4
DP19	Positive	Positive	Medium risk	3200 mg/kg	Class 5
DP20	Positive	Positive	Medium risk	1150 mg/kg	Class 4
DP26	Positive	Positive	Medium risk	1120 mg/kg	Class 4
DP27	Positive	Positive	Medium risk	1350 mg/kg	Class 4
DP28	Positive	Positive	Medium risk	1920 mg/kg	Class 5
DP32	Positive	Positive	Medium risk	3000 mg/kg	Class 5
DP56	Positive	Positive	Medium risk	1200 mg/kg	Class 4
DP58	Positive	Positive	Medium risk	1350 mg/kg	Class 4
DP61	Positive	Positive	Medium risk	2050 mg/kg	Class 5
DP63	Positive	Positive	Medium risk	3000 mg/kg	Class 5

Table 4	1.16: <i>I</i>	n silico	toxicity	results for	r best	12 hybrid	l compounds
Iunic			comercy	repares rol		1a m y Nm	2 compounds

4.2 Synthesis

4.2.1 Synthesis of coumarin-quinoxaline hybrids

The synthesis of coumarin-quinoxaline hybrids involved a three steps process. The first step was formation of an isonitroso acetanilide intermediate 2 which was formed

by reaction of substituted 7-amino coumarin **1** with chloral hydrate in the presence of hydroxylamine hydrate. This intermediate was then cyclised to isatin **3** derivatives by following the classic Sandmeyer cyclization (Silva *et al.*, 2013). These isatin derivatives were further further made to react with various substituted ethylene diamine derivatives **4** in the presence of glacial acetic acid to yield coumarin-quinoxaline derivatives **5** (**RB13-14, RB16-19, RB36-37, RB86-89**) (Avula *et al.*, 2013). The whole synthetic process has been outlined in Scheme 1 and physical characterization is given in Table 4.17. All the synthesized compounds were purified by recrystallization and characterized spectroscopically by modern analytical techniques.

Scheme 1. Synthetic route for coumarin-quinoxaline hybrids

Compound	R ₁	\mathbf{R}_2	R ₃	% Yield	Melting Point
RB13	CH ₃	Н	4-F	78	288-290 °C
RB14	CH ₃	Н	4-CF ₃	66	268-270 °C
RB16	CH ₃	Н	3-OCH ₃	72	298-301 °C
RB17	CH ₃	Н	3,4-(OCH ₃) ₂	66	298-301 °C
RB18	CH ₃	Н	4-Cl	78	278-280 °C
RB19	CH ₃	Н	4-Br	76	271-273 °C
RB36	C_6H_5	Н	3-OCH ₃	56	281-283 °C
RB37	C_6H_5	Н	3,4-(OCH ₃) ₂	58	278-281 °C

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 171

RB86	OH	OCH ₃	3-OCH ₃	62	308-310 °C
RB87	OH	OCH ₃	3,4-(OCH ₃) ₂	65	308-310 °C
RB88	OH	OCH ₃	4-Cl	68	265-267 °C
RB89	OH	OCH ₃	4-Br	72	266-268 °C

The structures of coumarin-quinoxaline hybrids were found to be novel and were determined by 2D NMR, IR and HRMS experiments. IR spectrum of the synthesized compounds showed bond at 3340-3367 for NH and 1020-1098 cm-1 corresponds to C=N and C-O stretch respectively in the synthesized compounds. In ¹H-NMR spectra of compounds, appearance of singlet peak at δ 12.09-13.05 ppm, corresponds to the presence of NH group of pyrollidine bridging coumarin and quinoxaline moieties, whereas the peak of proton in pyrone appeared as 6.17. In ¹³C NMR spectra peak at 155.20-162.64 ppm confirmed the presence of C=O and C=N in the hybrid molecules. The mass peak of RB17 with m/z 332.0990 (calcd. m/z 332.0927 [M+H]⁺) was observed in high resolution mass spectra (HRMS) represents the given structures.

4.2.2 Synthesis of coumarin-dihydropyrimidinone hybrids

The synthesis of coumarin-dihydropyrimidinone hybrids involved a three steps process. The first step was formation of 3-acetyl coumarin **8** which was formed by reaction of substituted salicyaldehydes **6** with ethyl acetoacetate **7** in the presence of piperdine (Vekariya *et al.*, 2017). This intermediate was then converted to 3-acetoacetyl coumarin derivative **10** by reacting with ethyl acetate **9** in the presence of potassium tertiary butoxide. In the final step this 3-acetoacetyl coumarin was condensed with various aromatic aldehydes **11** in the presence of urea and acetonitrile under acidic environment to yield the title compounds **12** (**CD6**, **CD8-10**, **CD19-20**, **CD28**, **CD32**, **CD42-44**, **CD49**) (Elmagharby *et al.*, 2013). The whole synthetic process has been outlined in Scheme 1. The mechanistic path to formulate this series of compounds is explained in Figure 4.36 and physical characterization is given in Table 4.18. All the synthesized compounds were purified by recrystallization and characterized spectroscopically by modern analytical techniques.

The structures of coumarin-dihydropyrimidinone hybrids were found to be novel and were determined by 2D NMR, IR and HRMS experiments. IR spectrum of the synthesized compounds showed prominent peaks at 3371(-NH), 3026(-CH), 1671(-

CN), 1758(-C=O), 1677(C=N), 1250(-CO) in the synthesized compounds. In ¹H-NMR spectra of compounds, appearance of singlet peaks at δ 8.50-10.00 ppm, corresponds to the presence of two NH groups of dihydropyrimidinone moiety, whereas the peak of proton in pyrone appeared as 8.30-8.70. In ¹³C NMR spectra peak at 199.0 ppm confirmed the presence of C=O bridging the two moieties and at 150.0 ppm was confirming the C=O in the dihydropyrimidinone moiety. The mass peak of CD28 with m/z 420.1088 (calcd. m/z 488.1062 [M+H]⁺) was observed in high resolution mass spectra (HRMS) represents the given structures.

Scheme 2. Synthetic pathway for coumarin-dihydropyrimidinone hybrids

The plausible mechanism is supposed to be started with condensation between the aromatic aldehyde **a** and urea **b** to form a hydroxyl phenyl urea intermediate **c** which upon removal of a water molecule get converted to an iminium **d** intermediate. This iminium intermediate acted as an electrophile which provides platform for nucleophilic addition of di-enol derivative **e** to form another intermediate **f**. This intermediate upon release of water molecule gets cyclized into dihydropyrimidinone derivative **g** (Figure 4.36).

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 173

Compound	R ₁	\mathbf{R}_2	% Yield	Melting point
CD6	2-OCH ₃	4-OH	66	268-270 °C
CD8	2-OCH ₃	4-OCH ₃	72	286-288 °C
CD9	2-OCH ₃	4-C1	78	258-261 °C
CD10	2-OCH ₃	4-F	80	242-244 °C
CD19	2-Cl	4-Cl	56	229-233 °C
CD20	2-Cl	4-F	62	226-228 °C
CD28	2-NO ₂	4-CH ₃	58	245-246 °C
CD32	2-NO ₂	4-Br	76	263-265 °C
CD42	2-CH ₃	4-C1	74	265-267 °C
CD43	2-CH ₃	4-F	78	241-243 °C
CD44	2-CH ₃	4-NH ₂	62	230-232 °C
CD49	2-F	4-F	63	252-254 °C

 Table 4.18: Physical characterization of coumarin-dihydropyrimidinone hybrids

Figure 4.36: Plausible mechanism of dihydropyrimidinones

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents 174

4.2.3 Synthesis of Coumarin-Dihydropyridine Hybrids

The first two steps in synthesis of coumarin-dihydropyridine hybrids were common as in case of coumarin-dihydropyrimidinone hybrids. The first step in the synthesis was formation of 3-acetyl coumarin which was formed by reaction of substituted salicyaldehydes with ethyl acetoacetate in the presence of piperdine (Vekariya et al., 2017). This intermediate was then converted to 3-acetoacetyl coumarin derivative by reacting with ethyl acetate in the presence of potassium tertiary butoxide. Further, preparation of coumarin-dihydropyridine hybrids 13 (DP12, DP18-20, DP26-28, DP32, DP56, DP58, DP61, DP63) involved one pot synthesis in which 3-acetoacetyl coumarin 10 was refluxed with benzaldehydes 11 in the presence of ammonium acetate 12 and ethanol (Sohal et al., 2014). The synthetic process has been outlined in Scheme 3. The products were symmetrical dihydropyridine derivatives which were prepared by classic Hantzsch method. The mechanistic path to formulate this series of compounds is explained in Figure 4.37 and physical characterization is given in Table 4.19. All the synthesized compounds were purified by recrystallization and characterized spectroscopically by modern analytical techniques. The plausible mechanism showed that synthesis of symmetrical dihydropyridines involved addition of compound **h** and **j** to form compound **l** accompanied by loss of an acetic acid molecule. At the same time, Knoevenegal condensation between \mathbf{h} and \mathbf{i} to give compound **m**, which follows Michael addition with compound **l** produces compound **n**. In the last step cyclization occurs to produce compound **8** and rearrange to yield 1,4-dihydropyridine molecules o (Figure 4.37).

Scheme 3. Synthetic process for coumarin-dihydropyridine hybrids

Compound	R ₁	\mathbf{R}_2	Percentage	Melting point
			yield	
DP12	Н	4-OCH ₃	66	286-288 °C
DP18	Н	4-Cl	82	292-294 °C
DP19	Н	4-OH	45	268-271 °C
DP20	Н	4-NO ₂	56	256-258 °C
DP26	2-F	4-F	66	246-249 °C
DP27	2-Cl	4-Cl	72	236-238 °C
DP28	2-Cl	4-NO ₂	78	255-257 °C
DP32	2-OH	4-OCH ₃	66	273-275 °C
DP56	2-NH ₂	4-NH ₂	70	275-277 °C
DP58	2-NH ₂	4-Cl	71	251-253 °C
DP61	2-CH ₃	4-CH ₃	87	240-242 °C
DP63	2-CH ₃	4-NH ₂	74	262-264 °C

Table 4.19: Physical characterization of coumarin-dihydropyridine hybrids

The structures of coumarin-dihydropyridine hybrids were found to be novel and were determined by 2D NMR, IR and HRMS experiments. IR spectrum of the synthesized compounds showed prominent peaks at 3371(-NH), 3026(-CH), 1643(-CN), 1748(-C=O), 1671(C=N), 1256(-CO) in the synthesized compounds. In ¹H-NMR spectra of compounds, appearance of singlet peaks at δ 8.70-8.71 ppm, corresponds to the presence of two NH groups of dihydropyridine moiety, whereas the peak of proton in pyrone appeared as 8.30-8.70. In ¹³C NMR spectra peak at 199.0 ppm confirmed the presence of C=O bridging the two moieties and at 159.0 ppm was corresponding to the C=O groups of pyrone ring. The mass peak of DP28 with m/z 643.0597 (calcd. m/z 643.0630 [M+H]⁺) was observed in high resolution mass spectra (HRMS) represents the given structures.

Figure 4.37: Plausible mechanism for formation of symmetrical dihydropyridines

4.3 In vitro antiproliferative activity

4.3.1 In vitro antiproliferative evaluation of the synthesized coumarin-

quinoxaline hybrids

Twelve synthesized coumarin-quinoxaline hybrid molecules were evaluated for anticancer activity against breast cancer (MCF7, T47D), liver cancer (HepG2) and lung cancer (A549) cell lines. The compounds exhibited the IC₅₀ values at micromolar ranges (Table 4.20). Exemestane and trastuzumab were used as reference drugs against breast cancer cell lines whereas doxorubicin was used against liver and lung cancer cell lines. Compound RB17 (3.8-5.12 µM) and RB86 (6.86-18.6 µM) displayed maximum potency against all the cell lines which was almost comparable to reference drugs Exemestane; IC50= 2.16 and 8.32 µM, Trastuzumab; IC50= 9.18 µM and 11.26 μ M against breast cancer cell lines and Doxorubicin; IC₅₀= 1.38 μ M and $3.56 \,\mu\text{M}$ against liver and lung cancer cell lines. Rest of the compounds revealed good to moderate activity against breast cancer cell lines and moderate to poor activity against lung and liver cancer cell lines. The most potent compounds RB17 and RB86 were also evaluated for normal cell toxicity against human lung fibroblast cell lines WI-38 and revealed a very high IC₅₀ values 178.36 and 194.26 μ M respectively which was even higher than the reference drugs. Thus the observations suggested that the compounds are safer to the normal cells. The overall study suggested that the synthesized molecules can serve as potential leads for drug development against cancers.

The cell viability of best six compounds was also assessed using all the above mentioned cell lines. By employing the MTT assay cell viability was determined by using the optical density of the control as 100% viability. The cancer cell lines were treated with the synthesized compounds and were further incubated for 4 hours followed by measurement of the optical density for all the treated cell lines. The cell viability against breast cancer cell lines (MCF7 and T47D) varied from 51.3-67.4% after four hours of incubation. Similarly against lung cancer cell lines (A549) the cell viability was found between 52.9-68.3%. For liver cancer cell lines (HepG2) it was found between 53.7-70.08%. The viability of the six best compounds was tested against all the four cancer cell lines and the obtained results have been presented in Figures 4.38-4.41. The results were compared with reference drugs exemestane, trastuzumab and doxorubicin.

Compound	IC ₅₀ (µM)							
	MCF7	T47D	A549	HepG2	WI-38			
RB13	16.80 ± 2.18	18.32 ± 1.06	14.32 ± 0.18	44.32 ± 2.18	NT			
RB14	22.38 ± 1.18	38.82 ± 2.46	32.18 ± 0.98	42.22 ± 1.88	NT			
RB16	36.8 ± 1.26	29.38 ± 1.02	>50	>50	NT			
RB17	3.8 ± 0.78	6.52 ± 0.82	3.2 ± 0.28	5.12 ± 0.82	178.36 ± 2.16			
RB18	17.82 ± 1.76	24.12 ± 1.48	19.32 ± 0.86	>50	NT			
RB19	42.12 ± 2.08	46.80 ± 2.08	>50	>50	NT			
RB36	12.8 ± 1.12	32.2 ± 1.82	16.34 ± 1.42	18.4 ± 1.26	NT			
RB37	37.08 ± 1.82	>50	29.18 ± 1.32	39.18 ± 1.24	NT			
RB86	7.82 ± 0.26	18.6 ± 1.12	9.46 ± 1.16	6.86 ± 0.78	194.26 ± 1.62			
RB87	38.26 ± 0.92	36.92 ± 2.86	28.26 ± 1.02	37.16 ± 2.32	NT			
RB88	40.13 ± 1.22	48.18 ± 1.86	30.06±0.68	>50	NT			
RB89	>50	>50	42.13 ± 2.26	>50	NT			
Exemestane	2.16 ± 0.32	8.38 ± 0.92	NT	NT	123.22 ± 0.86			
Trastuzumab	9.18 ± 1.02	11.26 ± 1.32	NT	NT	132.26 ± 0.92			

Table 4.20: IC₅₀ values of coumarin-quinoxaline hybrids against cancer and normal cell lines

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents

Figure 4.38: Percentage cell viability versus experimental trials using MTT assay against MCF-7 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. $p^a \le 0.05$ vs. control was considered to be statistically significant, $p^b \ge 0.05$ vs. exemestane and $p^c \ge 0.05$ vs. trastuzumab was considered to be statistically insignificant.

Figure 4.39: Percentage cell viability versus experimental trials using MTT assay against T47D cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. p^a \leq 0.05 vs. control was considered to be statistically significant, p^b \geq 0.05 vs. exemestane and p^c \geq 0.05 vs. trastuzumab was considered to be statistically insignificant

Figure 4.40: Percentage cell viability versus experimental trials using MTT assay against HepG-2 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. p^a \leq 0.05 vs. control was considered to be statistically significant and p^b \geq 0.05 vs. doxorubicin was considered to be statistically insignificant

Figure 4.41: Percentage cell viability versus experimental trials using MTT assay against A549 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. p^a \leq 0.05 vs. control was considered to be statistically significant and p^b \geq 0.05 vs. doxorubicin was considered to be statistically insignificant

A549

4.3.2 *In vitro* antiproliferative evaluation of the synthesized coumarindihydropyrimidinone hybrids

Twelve synthesized coumarin-dihydropyrimidinone hybrid molecules were evaluated for anticancer activity against breast cancer (MCF7, T47D), liver cancer (HepG2) and lung cancer (A549) cell lines. The compounds exhibited the IC₅₀ values at micromolar ranges (Table 4.21). Exemestane was used as reference drugs against breast cancer cell lines whereas doxorubicin was used against liver and lung cancer cell lines. Compound CD28 displayed maximum potency against breast cancer cell lines with IC₅₀ = 8.82 and 13.82 μ M, which was almost comparable to reference drugs Exemestane; IC₅₀= 7.32 and 28.28 μ M, against breast cancer cell lines. On the other hand, compounds CD10 and CD8 displayed maximum potency against the liver and lung cancer cell lines in the range of IC₅₀=3.68-14.12 μ M in comparison to the reference drug Doxorubicin (IC₅₀= $3.36-5.08 \mu$ M). Rest of the compounds revealed good to moderate activity against breast cancer cell lines and moderate to poor activity against lung and liver cancer cell lines. The most potent compounds CD28 and CD10 were also evaluated for normal cell toxicity against human lung fibroblast cell lines WI-38 and revealed a very high IC₅₀ values 144.42 and 188.42 µM respectively which was even higher than the reference drugs. Thus the observations suggested that the compounds are safer to the normal cells. The overall study suggested that the synthesized molecules can serve as potential leads for drug development against cancers.

The cell viability of best six compounds was also assessed using all the above mentioned cell lines. By employing the MTT assay cell viability was determined by using the optical density of the control as 100% viability. The cancer cell lines were treated with the synthesized compounds and were further incubated for 4 hours followed by measurement of the optical density for all the treated cell lines. The cell viability against breast cancer cell lines (MCF7 and T47D) varied from 53.3-68.4% after four hours of incubation. Similarly against lung cancer cell lines (A549) the cell viability was found between 51.2-69.3%. For liver cancer cell lines (HepG2) it was found between 50.7-68.18%. The viability of the six best compounds was tested against all the four cancer cell lines and the obtained results have been presented in Figures 4.42-4.45. The results were compared with reference drugs exemestane and doxorubicin.

Compound	IC ₅₀ (μM)							
	MCF7	T47D	A549	HepG2	WI-38			
CD6	22.8 ± 2.18	38.82 ± 2.46	24.26 ± 0.48	32.48 ± 2.16	NT			
CD8	16.8 ± 0.96	22.38 ± 1.02	12.02 ± 0.86	14.12 ± 1.28	NT			
CD9	34.8 ± 2.26	39.38 ± 1.12	>50	41.34 ± 0.82	NT			
CD10	30.8 ± 1.78	16.42 ± 0.62	3.68 ± 0.48	5.22 ± 0.42	188.42 ± 0.76			
CD19	24.8 ± 1.12	28.2 ± 1.82	29.22 ± 0.62	31.35 ± 0.72	NT			
CD20	27.82 ± 1.76	32.6 ± 1.42	>50	48.56 ± 1.62	NT			
CD28	8.82 ± 0.26	13.82 ± 1.08	5.47 ± 1.02	7.4 ± 0.64	144.42 ± 2.06			
CD32	42.18 ± 1.62	>50	39.28 ± 1.56	42.23 ± 1.14	NT			
CD42	46.22 ± 0.26	38.6 ± 1.12	>50	>50	NT			
CD43	38.26 ± 0.92	>50	28.26 ± 1.02	37.16 ± 2.32	NT			
CD44	23.82 ± 1.28	26.82 ± 2.16	30.06±0.68	>50	NT			
CD49	>50	48.24± 2.12	37.24± 1.34	>50	NT			
Exemestane	7.32 ± 0.32	18.28 ± 0.92	NT	NT	123.22 ± 0.86			
Doxorubicin	NT	NT	3.36 ± 0.26	5.08 ± 0.34	89.13 ± 1.12			

Table 4.21: IC₅₀ values of coumarin-dihydropyrimidinone hybrids against cancer and normal cell lines

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents

Figure 4.42: Percentage cell viability versus experimental trials using MTT assay against MCF-7 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. p^a \leq 0.05 vs. control was considered to be statistically significant, p^b \geq 0.05 vs. exemestane was considered to be statistically insignificant.

Figure 4.43: Percentage cell viability versus experimental trials using MTT assay against T47D cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. p^a \leq 0.05 vs. control was considered to be statistically significant, p^b \geq 0.05 vs. exemestane was considered to be statistically insignificant.

Figure 4.44: Percentage cell viability versus experimental trials using MTT assay against HepG2 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. $p^a \leq 0.05$ vs. control was considered to be statistically significant, $p^b \ge 0.05$ vs. doxorubicin was considered to be statistically insignificant.

A549

Figure 4.45: Percentage cell viability versus experimental trials using MTT assay against A549 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. $p^a \leq 0.05$ vs. control was considered to be statistically significant, $p^b \ge 0.05$ vs. doxorubicin was considered to be statistically insignificant.

4.3.3 *In vitro* antiproliferative evaluation of the synthesized coumarindihydropyridine hybrids

Twelve synthesized coumarin-dihydropyridine hybrid molecules were evaluated for anticancer activity against breast cancer (MCF7, T47D), liver cancer (HepG2) and lung cancer (A549) cell lines. The compounds exhibited the IC₅₀ values at micromolar ranges (Table 4.23). Exemestane was used as reference drugs against breast cancer cell lines whereas doxorubicin was used against liver and lung cancer cell lines. Compound DP32, DP28 and DP20 displayed maximum potency against all the four cancer cell lines with IC₅₀= $5.22-15.42 \mu$ M, which was almost comparable to reference drugs Exemestane; IC50= 7.32 and 18.28 µM, against breast cancer cell lines. And Doxorubicin; IC₅₀= 3.36 and 5.08μ M, against liver and lung cancer cell lines. Also compounds DP17, DP28 and DP63 good potency against all the cancer cell lines. Rest of the compounds revealed good to moderate activity. The most potent compounds DP28 and DP32 were also evaluated for normal cell toxicity against human lung fibroblast cell lines WI-38 and revealed a very high IC₅₀ values 118.61 and 121.42 µM respectively which was even higher than the reference drugs. Thus the observations suggested that the compounds are safer to the normal cells. The overall study suggested that the synthesized molecules can serve as potential leads for drug development against cancers.

The cell viability of best six compounds was also assessed using all the above mentioned cell lines. By employing the MTT assay cell viability was determined by using the optical density of the control as 100% viability. The cancer cell lines were treated with the synthesized compounds and were further incubated for 4 hours followed by measurement of the optical density for all the treated cell lines. The cell viability against breast cancer cell lines (MCF7 and T47D) varied from 50.3-62.4% after four hours of incubation. Similarly against lung cancer cell lines (A549) the cell viability was found between 56.2-68.3%. For liver cancer cell lines (HepG2) it was found between 51.7-70.18%. The viability of the six best compounds was tested against all the four cancer cell lines and the obtained results have been presented in Figures 4.46-4.49. The results were compared with reference drugs exemestane and doxorubicin.

Compound	IC ₅₀ (µM)							
	MCF7	T47D	A549	HepG2	WI-38			
DP12	24.8 ± 1.48	28.62 ± 1.46	29.64 ± 0.48	37.38 ± 1.64	NT			
DP18	16.28 ± 0.86	22.32 ± 1.42	18.22 ± 0.66	29.22 ± 0.88	NT			
DP19	39.8 ± 2.26	42.38 ± 1.12	36.82 ± 2.16	45.34 ± 0.82	NT			
DP20	12.28 ± 0.78	15.46 ± 0.82	7.48 ± 0.68	8.26 ± 0.92	NT			
DP26	26.8 ± 1.12	27.2 ± 1.82	31.12 ± 0.42	33.25 ± 0.82	NT			
DP27	17.82 ± 1.46	26.62 ± 1.72	16.82 ± 1.16	24.56 ± 0.62	NT			
DP28	7.82 ± 1.16	15.02 ± 0.98	7.47 ± 0.86	7.14 ± 0.64	118.61 ± 1.72			
DP32	5.22 ± 0.62	10.14 ± 1.34	3.82 ± 0.56	7.24 ± 0.44	121.42 ± 2.06			
DP56	36.28 ± 0.46	34.16 ± 1.72	38.42 ± 1.96	30.82 ± 1.16	NT			
DP58	40.26 ± 0.92	36.82 ± 2.16	38.26 ± 1.22	47.16 ± 1.32	NT			
DP61	39.82 ± 1.28	46.82 ± 2.16	39.06±0.58	36.82 ± 2.26	NT			
DP63	22.82 ± 2.16	28.24 ± 2.12	27.24± 1.34	29.82 ± 1.26	NT			
Exemestane	7.32 ± 0.32	18.28 ± 0.92	NT	NT	123.22 ± 0.86			
Doxorubicin	NT	NT	3.36 ± 0.26	5.08 ± 0.34	89.13 ± 1.12			

Table 4.23: IC₅₀ values of coumarin-dihydropyridine hybrids against cancer and normal cell lines

Design, Synthesis and Evaluation of Coumarin Fused/Tethered Nitrogen containing Heterocycles as Anticancer Agents

Figure 4.46: Percentage cell viability versus experimental trials using MTT assay against MCF-7 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. P^a≤0.05 vs. control was considered to be statistically significant, p^b≥0.05 vs. exemestane was considered to be statistically insignificant.

Figure 4.47: Percentage cell viability versus experimental trials using MTT assay against T47D cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. P^a \leq 0.05 vs. control was considered to be statistically significant, p^b \geq 0.05 vs. exemestane was considered to be statistically insignificant.

Figure 4.48: Percentage cell viability versus experimental trials using MTT assay against A549 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. P^a \leq 0.05 vs. control was considered to be statistically significant, p^b \geq 0.05 vs. doxorubicin was considered to be statistically insignificant.

Figure 4.49: Percentage cell viability versus experimental trials using MTT assay against HepG2 cell line. Data was shown as Mean \pm SD and statistically analyzed by one way ANOVA followed by tukey's post hoc test. P^a \leq 0.05 vs. control was considered to be statistically significant, p^b \geq 0.05 vs. doxorubicin was considered to be statistically insignificant.

4.3.4 Normal Cell Toxicity

As stated in antiproliferative activity, two most potent compounds from each series were also evaluated to check their toxicity on normal human cells. The normal cell cytotoxicity was assessed against human normal lung fibroblast cell lines WI-38. The IC₅₀ values were compared to all the three reference drugs exemestane, trastuzumab and doxorubicin (Figure 4.50). The results evidenced that the IC₅₀ values for all the compounds (RB17, RB86, CD10, CD28, DP28 and DP32) were quite high in the range of 125.0-190.0 μ M which was higher even than the reference drugs. These observations indicated that the synthesized compounds are specific to the cancer cells only and are safer to the normal human cells.

rest compounds

Figure 4.50. Cytotoxic effects of most potent compounds on normal human cells

4.4 Structural Activity Relationships (SAR)

4.4.1 SAR of coumarin-quinoxaline hybrids

Important aspects found about structural activity relationship of coumarin-quinoxaline hybrids are as follows:

A. Substitution of pyrone ring at 4th position with –CH₃, -C₆H₅ and –OH produced compounds with good to moderate activity (RB17, RB36).

- B. Substitution of coumarin ring at 5th position with –OCH₃ group revealed excellent activity (RB86).
- C. Substitution of phenyl ring of quinoxaline moiety at 5^{th} position with $-\text{OCH}_3$ and 5^{th} and 6^{th} position with $-(\text{OCH}_3)_2$ displayed maximum potency whereas substitution at 5^{th} position with halogens displayed moderate activity.
- D. Docking studies revealed that the keto group of coumarin was essential for aromatase binding whereas quinoxaline moiety also displayed arene-cation interactions with the aromatse.
- E. It was also worth notable that pyrrolidine moiety bridging the coumarin and quinoxaline displayed significant interactions with both aromatase and HER2.
 Figure 4.51 depicts important points of observed structural activity relationship.

Figure 4.51: SAR of coumarin-quinoxaline hybrids

4.4.2 SAR of coumarin-dihydropyrimidinone hybrids

Important aspects found about structural activity relationship of coumarindihydropyrimidinone hybrids are as follows:

A. Substitution of phenyl ring of coumarin at 7th position with –OCH₃ and –NO₂ revealed maximum potency (CD28 and CD8) whereas attachment of halogens at the same position lowered the activity (CD19, CD20).

- B. Incorporation of -OCH₃, -CH₃ and -F on the 4th position of phenyl ring revealed improved activity (CD8, CD28, CD10).
- C. Substitution of phenyl ring at 4th position with higher halogens Cl, Br and NH₂ displayed slightly lower activity (CD32, CD42, CD44).
- D. Docking studies revealed that the keto group of coumarin was essential for aromatase binding whereas phenyl ring also displayed arene-cation interactions with the aromatse.
- E. The amino groups of dihydropyrimidinone moiety displayed significant hydrogen bonding interactions with the amino acids.

Figure 4.52 depicts important points of SAR observed for coumarindihydropyrimidinone hybrids.

Figure 4.52: SAR of coumarin-dihydropyrimidinone hybrids

4.4.3 SAR of coumarin-dihydropyridine hybrids

Important aspects found about structural activity relationship of coumarindihydropyridine hybrids are as follows:

A. Unsubstituted phenyl ring of coumarin moiety displayed maximum potency (DP18, DP20).

- B. Also substitution of phenyl ring of coumarin moiety at 7th position with –Cl, -OH and –NH₂ displayed good to excellent activity (DP28, DP32, DP63).
- C. It was also worth notable that substitution of phenyl ring of coumarin on the 7^{th} position with $-CH_3$ and $-OCH_3$ revealed slightly lower activity (DP61, DP63).
- D. Incorporation of electron withdrawing groups (-Cl, -NO₂) on 4th position of phenyl ring diaplayed maximum potency (DP18, DP28).
- E. The dihydropyridine moiety displayed significant binding with the aromatase through its –NH group.
- F. Docking studies revealed that the keto group of coumarin was essential for aromatase binding.

Figure 4.53 depicts important points of SAR observed for coumarindihydropyridine hybrids.

Figure 4.53: SAR Of coumarin-dihydropyridine hybrids