REFERENCES

- [1] Acharyya, A., Rakshit, S., Sarkar, R., Basu, S., and Nasipuri, M., (2013), "Handwritten Word Recognition Using MLP Based Classifier: A Holistic Approach," *International Journal of Computer Science Issues*, **10**(2), pp. 422–427.
- [2] Adak, C., Chaudhuri, B. B., and Blumenstein, M., (2016), "Offline Cursive Bengali Word Recognition Using CNNs with A Recurrent Model," *Proc.* 15th *International Conference on Frontiers in Handwriting Recognition*, Shenzhen, China, pp. 429–434.
- [3] Arani, S. A. A. A. , Kabir, E., and Ebrahimpour, R., (2019), "Handwritten Farsi Word Recognition Using NN-Based Fusion of HMM Classifiers with Different Types of Features," *International Journal of Image and Graphics*, 19(1), pp. 1–21.
- [4] Arora, S., Bhattacharjee, D., Nasipuri, M., Basu, K. D., and Kundu, M., (2008), "Combining Multiple Feature Extraction Techniques for Handwritten Devnagari Character Recognition," *Proc. IEEE Region 10 and 3rd International Conference on Industrial and Information Systems (ICIIS)*, Kharagpur, India, pp. 1–6.
- [5] Assayony, M. O., and Mahmoud, S. A., (2017), "Integration of Gabor Features with Bag-of-Features Framework for Arabic Handwritten Word Recognition," *Proc. 9th IEEE-GCC Conference and Exhibition (GCCCE)*, Manama, Bahrain, pp. 1–4.
- [6] Bartnik, D. C., Govindaraju, V., Srihari, S. N., and Phan, B. C., (1998),
 "Postal Reply Card Processing," *Proc.* 14th International Conference on Pattern Recognition (ICPR), Brisbane, Queensland, Australia, 1, pp. 633–636.
- Barua, S., Malakar, S., Bhowmik, S., Sarkar, R., and Nasipuri, M., (2017),
 "Bangla Handwritten City Name Recognition Using Gradient-Based Feature," *Proc.* 5th International Conference on Frontiers in Intelligent Computing: *Theory and Applications*, S. Satapathy, V. Bhateja, S. Udgata, P. Pattnaik, eds., Advances in Intelligent Systems and Computing, Springer, Singapore, 515, pp. 343–352.

- [8] Basu, S., Das, N., Sarkar, R., Kundu, M., Nasipuri, M., and Basu, D. K., (2009), "A Hierarchical Approach to Recognition of Handwritten Bangla Characters," *Pattern Recognition*, **42**(7), pp. 1467–1484.
- Bhowmik, S., Malakar, S., Sarkar, R., and Nasipuri, M., (2014a), "Handwritten Bangla Word Recognition Using Elliptical Features," *Proc. International Conference on Computational Intelligence and Communication Networks (CICN)*, Bhopal, India, pp. 257–261.
- [10] Bhowmik, S., Roushan, M. G., Sarkar, R., Nasipuri, M., Polley, S., and Malakar, S., (2014b), "Handwritten Bangla Word Recognition Using HOG Descriptor," *Proc. 4th International Conference on Emerging Applications of Information Technology*, Kolkata, India, pp. 193–197.
- Bhowmik, S., Malakar, S., Sarkar, R., Basu, S., Kundu, M., and Nasipuri, M.,
 (2019), "Off-Line Bangla Handwritten Word Recognition: A Holistic Approach," *Neural Computing and Applications*, **31**, pp. 5783–5798.
- [12] Bhunia, A. K., Das, A., Bhunia, A. K., Kishore, P. S. R., and Roy, P. P., (2019), "Handwriting Recognition in Low-Resource Scripts Using Adversarial Learning," *Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, Long Beach, CA, USA, pp. 4762–4771.
- Bhunia, A. K., Mukherjee, S., Sain, A., Bhunia, A. K., Roy, P. P., and Pal, U.,
 (2020), "Indic Handwritten Script Identification Using Offline-Online Multi-Modal Deep Network," *Information Fusion*, 57, pp. 1–14.
- [14] Bianne-Bernard, A., Menasri, F., Mohamad, R. A., Mokbel, C., Kermorvant, C., and Likforman-Sulem, L., (2011), "Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition," *IEEE Transactions* on Pattern Analysis and Machine Intelligence, **33**(10), pp. 2066–2080.
- [15] Blessie E. C., and Karthikeyan E., (2012), "Sigmis: A Feature Selection Algorithm Using Correlation Based Method," *Journal of Algorithms & Computational Technology*, 6(3), pp. 385–394.
- [16] Blumenstein, M., and Verma, B., (1999), "A New Segmentation Algorithm for Handwritten Word Recognition," *Proc. International Joint Conference on Neural Networks* '99 (IJCNN'99), Washington, DC, USA, 4, pp.2893–2898.

- [17] Bouaziz, S., Mezghani, A., and Kanoun, S., (2014), "Arabic Handwritten Word Recognition with Large Vocabulary Based on Explicit Segmentation," *Proc. International Conference on Information and Communication Technologies Innovation and Application (ICTIA)*, Sousse, Tunisia, pp. 1–4.
- [18] Bouwhuis, D., and Bouma, H., (1979), "Visual Word Recognition of Three Letter Words as Derived from the Recognition of the Constituent Letters," *Perception and Psychophysics*, 25, pp. 12–22.
- [19] Bozinovic, M. R., and Srihari, N. S., (1989), "Off-Line Cursive Script Word Recognition," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **11**(1), pp. 68–83.
- [20] Breiman, L., (1994), "Bagging Predictors," (PDF), Technical Report No. 421, Department of Statistics, University of California, Berkeley, California.
- [21] Breiman, L., (2001), "Random Forests," *Machine Learning*, **45** (1), pp. 5–32.
- [22] Cattell, J., (1886), "The Time Taken Up by Cerebral Operations," *Mind*, **11**, pp. 220–242.
- [23] Cattoni, R., Coianiz, T., Messoldi, S., and Modena, C. M., (1998), "Geometric Layout Analysis Techniques for Document Image Understanding: A Review," Technical Report No. 9703–09, ITC–irst, Trento, Italy.
- [24] Chaudhuri, B. B., Pal, U., and Mitra, M., (2002), "Automatic Recognition of Printed Oriya Script," *Sadhana*, 27, pp. 23–34.
- [25] Cheikh, I. B., and Kacem, A., (2007), "Neural Network for the Recognition of Handwritten Tunisian City Names," Proc. 9th International Conference on Document Analysis and Recognition (ICDAR), Parana, Brazil, pp. 1108–1112.
- [26] Chen, T., and Guestrin, C., (2016), "XGBoost: A Scalable Tree Boosting System," Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 785–794.
- [27] Chherawala, Y., Roy, P. P., and Cheriet, M., (2016), "Feature Set Evaluation for Offline Handwriting Recognition Systems: Application to the Recurrent Neural Network Model," *IEEE Transactions on Cybernetics*, **46** (12), pp. 2825–2836.

- [28] Chowdhury, K., Alam, L., Sarmin, S., Arefin, S., and Hoque, M. M., (2015),
 "A Fuzzy Features Based Online Handwritten Bangla Word Recognition Framework," *Proc.* 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, pp. 484–489.
- [29] Dai, R., Liu, C., and Xiao, B., (2007), "Chinese Character Recognition: History, Status and Prospects," *Frontiers of Computer Science in China*, 1, pp. 126–136.
- [30] Das, S., and Banerjee, S., (2015), "An Algorithm for Japanese Character Recognition," *International Journal of Image, Graphics and Signal Processing*, 7(1), pp. 9–15.
- [31] Das, S., Singh, P. K., Bhowmik, S., Sarkar, R., and Nasipuri, M., (2016), "A Harmony Search Based Wrapper Feature Selection Method for Holistic Bangla Word Recognition," *Procedia Computer Science*, **89**, pp. 395–403.
- [32] Dasgupta, J., Bhattacharya, K., and Chanda, B., (2016), "A Holistic Approach for Off-Line Handwritten Cursive Word Recognition Using Directional Feature Based on Arnold Transform," *Pattern Recognition Letters*, **79**, pp. 73– 79.
- [33] Dash, M., and Liu, H., (2003), "Consistency-Based Search in Feature Selection," *Artificial Intelligence*, **151**, pp. 155–176.
- [34] De Oliveira, J. J., de A. Freitas, C. O., de Carvalho, J. M., and Sabourin, R., (2009), "Handwritten Word Recognition Using Multi-view Analysis," E. Bayro-Corrochano, J. O. Eklundh, eds., *Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications*, CIARP 2009, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, **5856**, pp. 371–378.
- [35] Dehghan, M., Faez, K., Ahmadi, M., and Shridhar, M., (2001), "Handwritten Farsi (Arabic) Word Recognition: A Holistic Approach Using Discrete HMM," *Pattern Recognition Letters*, 34(5), pp. 1057–1065.
- [36] Dhandra, B. V., Mallikarjun, H., Hegadi, R., and Malemath, V. S., (2007),
 "Word-Wise Script Identification from Bilingual Documents Based on Morphological Reconstruction," *Proc. 1st International Conference on Digital Information Management*, Bangalore, India, pp. 389–394

- [37] Dhiman, S., and Lehal, G. S., (2017), "Performance Comparison of Gurmukhi Script: k-NN Classifier with DCT and Gabor Filter," *International Journal of Advanced Research in Computer Science*, 8(5), pp. 762–764.
- [38] Edelman, S., Flash, T., and Ullman, S., (1990), "Reading Cursive Handwriting by Alignment of Letter Prototypes," *International Journal of Computer Vision*, 5(3), pp. 303–331.
- [39] Fan, D., Gao, G., and Wu, H., (2018), "MHW Mongolian Offline Handwritten Dataset and Its Application," *Journal of Chinese Information Processing*, 32(1), pp. 89–95.
- [40] Farrahi, M. R., Cheriet, M., Adankon, M. M., Filonenko, K., and Wisnovsky,
 R., (2010), "IBN SINA: A Database for Research on Processing and Understanding of Arabic Manuscripts Images," *Proc. 9th IAPR International Workshop on Document Analysis Systems*, Boston, Massachusetts, USA, pp. 11–18.
- [41] Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D., (2014), "Do We Need Hundreds of Classifiers to Solve Real World Classification Problems," *Journal of Machine Learning Research*, 15(1), pp. 3133–3181
- [42] Fisher, D.F., (1975), "Reading and Visual Search," *Memory and Cognition*, 3, pp. 188–196.
- [43] Freund, Y., and Schapire, R. E., (1997), "A Decision-Theoretic Generalization of On-Line Learning and An Application to Boosting," *Journal of Computer and System Sciences*, 55(1), pp. 119–139.
- [44] Gao, X., and Jin, L., (2012), "A Vision-Based Fast Chinese Postal Envelope Identification System," *Journal of Information Science and Engineering*, 28(1), pp. 31–49.
- [45] Ghadhban H. Q., Othman M., Samsudin N. A., Ismail M. N. B., and Hammoodi M. R., (2020), "Survey of Offline Arabic Handwriting Word Recognition," *Proc. International Conference on Soft Computing and Data Mining*, R. Ghazali, N. Nawi, M. Deris, J. Abawajy, eds., Recent Advances on Soft Computing and Data Mining, Advances in Intelligent Systems and Computing, Springer, Cham, **978**, pp. 358–372.

- [46] Ghosh, R., and Roy, P. P., (2016), "Comparison of Zone-Features for Online Bengali and Devanagari Word Recognition Using HMM," *Proc.* 15th *International Conference on Frontiers in Handwriting Recognition (ICFHR)*, Shenzhen, China, pp. 435–440.
- [47] Ghosh, M., Malakar, S., Bhowmik, S., Sarkar, R., and Nasipuri, M., (2019), "Feature Selection for Handwritten Word Recognition Using Memetic Algorithm," *Advances in Intelligent Computing*, J. Mandal, P. Dutta, S. Mukhopadhyay, eds., Studies in Computational Intelligence, Springer, Singapore, **687**, pp. 103–124.
- [48] Gough, P.B., (1972), "One second of reading," J. F. Kavanagh and I. G. Mattingly, eds., Language by ear and by eye: The relationship between speech and reading, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.
- [49] Gowda, P. K., Chethan, S., Harsha, J., Rakesh, J., and Tanushree, K. N., (2017), "Offline Kannada Handwritten Word Recognition Using Locality Preserving Projections (LPP)," *International Journal of Innovative Research in Computer and Communication Engineering*, 5(5), pp. 9955–9960.
- [50] Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., and Fernández, S., (2008), "Unconstrained On-Line Handwriting Recognition with Recurrent Neural Networks," *Proc.* 21st Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp. 577–584.
- [51] Gunter, S., and Bunke, H., (2004), "Optimization of Weights in a Multiple Classifier Handwritten Word Recognition System Using a Genetic Algorithm," *Electronic Letters on Computer Vision and Image Analysis*, 3(1), pp. 25–41.
- [52] Gupta, J. D., Samanta, S.,and Chanda, B., (2018), "Ensemble Classifier-Based Off-Line Handwritten Word Recognition System in Holistic Approach," *IET Image processing*, **12**(8), pp. 1467–1474.
- [53] Hafiz, A. M., and Bhat, G. M., (2016), "Arabic OCR Using A Novel Hybrid Classification Scheme," *Journal of Pattern Recognition Research*, **11**(1), pp. 55–60.

- [54] Hallale, S. B., and Salunke, G. D., (2013), "Twelve Directional Feature Extraction for Handwritten English Character Recognition," *International Journal of Recent Technology and Engineering (IJRTE)*, 2(2), pp. 39–42.
- [55] Hamida, S., Cherradi, B., and Ouajji, H., (2020), "Handwritten Arabic Words Recognition System Based on HOG and Gabor Filter Descriptors," Proc.1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, pp. 1–4.
- [56] Ibrayim, M., and Hamdulla, A., (2015), "On-Line Handwritten Uyghur Word Recognition Using Segmentation-Based Techniques," *International Journal of Signal Processing, Image Processing and Pattern Recognition*, 8(6), pp. 51– 60.
- [57] Idris, F., and Panchanathan, S., (1997), "Review of Image and Video Indexing Techniques," *Journal of Visual Communication and Image Representation*, 8(2), pp. 146–166.
- [58] Ikram, S. T., and Cherukuri, A. K., (2017), "Intrusion Detection Model Using Fusion of Chi-Square Feature Selection and Multi Class SVM," *Journal of King Saud University - Computer and Information Sciences*, 29(4), pp. 462– 472.
- [59] Imani, Z., Ahmadyfard, A. R., and Zohrevand, A., (2016), "Holistic Farsi Handwritten Word Recognition Using Gradient Features," *Journal of Artificial Intelligence and Data Mining*, 4(1), pp. 19–25.
- [60] Jaeger, S., Manke, S., Reichert, J., and Waibel, A., (2001), "Online Handwriting Recognition: the NPen++ Recognizer," *International Journal on Document Analysis and Recognition*, 3(3), pp. 169–180.
- [61] Jayadevan, R., Kolhe, S. R., Patil, P. M., and Pal, U., (2011), "Database Development and Recognition of Handwritten Devanagari Legal Amount Words," *Proc. International Conference on Document Analysis and Recognition*, Beijing, China, pp. 304–308.
- [62] Jayech, K., Mahjoub, M., and Amara, N. B., (2016), "Arabic Handwritten Word Recognition Based on Dynamic Bayesian Network," *International Arab Journal of Information Technology*, **13**(6B), pp. 1024–1031.

- [63] Jino, P. J., and Balakrishnan, K., (2017), "Offline Handwritten Malayalam Word Recognition Using Wavelet Transform," *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*, 2(5), pp. 948–954.
- [64] Jino, P. J., Balakrishnan, K., and Bhattacharya, U., (2019), "Offline Handwritten Malayalam Word Recognition Using a Deep Architecture," J. Bansal, K. Das, A. Nagar, K. Deep, A. Ojha, eds., *Soft Computing for Problem Solving*, Advances in Intelligent Systems and Computing, Springer, Singapore, **816**, pp. 913–925.
- [65] Karim, A., and Kadhm, M. S., (2015a), "Handwriting Word Recognition Based on Neural Networks," *International Journal of Applied Engineering Research*, **10**(22), pp. 43120–43124.
- [66] Karim, A., and Kadhm, M. S., (2015b), "Handwriting Word Recognition Based on SVM Classifier," *International Journal of Advanced Computer Science and Applications*, 6(11), pp. 64–68.
- [67] Kaur, H., and Kumar, M., (2019), "Benchmark Dataset: Offline Handwritten Gurmukhi City Names for Postal Automation", *Proc. Workshop on Document Analysis and Recognition*, DAR 2018, S. Sundaram, G. Harit, eds., Communications in Computer and Information Science, Springer, Singapore, 1020, pp. 152–159.
- [68] Kessentini, Y., Paquet, T., and Hamadou, A. M. B., (2010), "Off-Line Handwritten Word Recognition Using Multi-Stream Hidden Markov Models," *Pattern Recognition Letters*, **31**(1), pp. 60–70.
- [69] Khemiri, A., Echi, A. K., Belaid, A., and Elloumi, M., (2016), "A System for Off-Line Arabic Handwritten Word Recognition Based on Bayesian Approach," Proc. 15th International Conference on Frontiers in Handwriting Recognition, Shenzhen, China, pp. 560–565.
- [70] Khlif, H., Prum, S., Kessentini, Y., Kanoun, S., and Ogier, J. M., (2016),
 "Fusion of Explicit Segmentation Based System and Segmentation-Free Based System for On-Line Arabic Handwritten Word Recognition," *Proc.* 15th *International Conference on Frontiers in Handwriting Recognition (ICFHR)*, Shenzhen, China, pp. 399–404.

- [71] Kim, G., and Govindaraju, V., (1998), "Handwritten Phrase Recognition as Applied to Street Name Images," *Pattern Recognition*, **31**(1), pp. 41–51.
- [72] Kimura, F., Miyake, Y., and Sridhar, M., (1995), "Handwritten ZIP Code Recognition Using Lexicon Free Word Recognition Algorithm," *Proc. 3rd International Conference on Document Analysis and Recognition (ICDAR)*, Montreal, Quebec, Canada, 2, pp. 906–910.
- [73] Kotsiantis, S.B., (2013), "Decision Trees: A Recent Overview," *Artificial Intelligence Review*, **39**, pp. 261–283.
- [74] Kumar, M., Jindal, M. K., and Sharma, R. K., (2013a), "PCA Based Offline Handwritten Gurmukhi Character Recognition," *Smart Computing Review*, 3(5), pp. 346–357.
- [75] Kumar, M., Sharma, R. K., and Jindal, M. K., (2013b), "A Novel Feature Extraction Technique for Offline Handwritten Gurmukhi Character Recognition," *IETE Journal of Research*, **59**(6), pp. 687–692.
- [76] Kumar, M., Jindal, M. K., and Sharma, R. K., (2014a), "A Novel Hierarchical Technique for Offline Handwritten Gurmukhi Character Recognition," *National Academy Science Letters*, **37**(6), pp. 567–572.
- [77] Kumar, M., Jindal, M. K., and Sharma, R. K., (2014b), "Efficient Feature Extraction Techniques for Offline Handwritten Gurmukhi Character Recognition," *National Academy Science Letters*, **37**(4), pp. 381–391.
- [78] Kumar, M., and Chandran, S., (2015), "Handwritten Malayalam Word Recognition System Using Neural Networks," *International Journal of Engineering Research and Technology (IJERT)*, 4(4), pp. 90–99.
- [79] Kumar, M., Jindal, M. K., Sharma, R. K., and Jindal, S. R., (2016), "Offline Handwritten Pre-Segmented Character Recognition of Gurmukhi Script," *Machine Graphics and Vision*, 25(1), pp. 45–55.
- [80] Kumar, M., Jindal, M. K., and Sharma, R. K., (2017), "Offline Handwritten Gurmukhi Character Recognition: Analytical Study of Different Transformations," *Proc. National Academy of Sciences, India Section A: Physical Sciences*, 87, pp. 137–143.

- [81] Kumar, M., Jindal, M. K., Sharma, R. K., and Jindal, S. R., (2018), "Performance Comparison of Several Feature Selection Techniques for Offline Handwritten Character Recognition," *Proc. International Conference* on Research in Intelligent and Computing in Engineering (RICE), San Salvador, El Salvador, pp. 1–6.
- [82] Kumar, M., Jindal, S. R., Jindal, M. K., and Lehal, G. S., (2019), "Improved Recognition Results of Medieval Handwritten Gurmukhi Manuscripts Using Boosting and Bagging Methodologies," *Neural Processing Letters*, **50**, pp. 43– 56.
- [83] Kumar, S., (2016), "A Study for Handwritten Devanagari Word Recognition," Proc. International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, pp.1009–1014.
- [84] Lee, H., and Verma, B., (2011), "Binary Segmentation Algorithm for English Cursive Handwriting Recognition," *Pattern Recognition*, 45(4), pp. 1306– 1317.
- [85] Lehal, G. S., and Singh, C., (2002), "A Post-Processor for Gurmukhi OCR," Sadhana, 27(1), pp. 99–111.
- [86] Li, H., Doermann, D., and Kia, O., (2000), "Automatic Text Detection and Tracking in Digital Video," *IEEE Transactions on Image Processing*, 9(1), pp. 147–156.
- [87] Liu, L., Koga, M., and Fujisawa, H., (2002), "Lexicon Driven Segmentation and Recognition of Handwritten Character Strings for Japanese Address Reading," *IEEE Transactions on Pattern Analysis and Machine Intelligence* (*PAMI*), 24(11), pp. 1425–1437.
- [88] Liu, L., Lu, S., Lu, Y., and Suen, C. Y., (2014), "Application of PR Techniques to Mail Sorting in China," *Proc. International Conference on Computer Science & Software Engineering (C3S2E)*, Montreal, QC, Canada, pp. 1–7.
- [89] Liu, J., Ma, L. -L. and Wu, J., (2016), "Online Handwritten Mongolian Word Recognition Using MWRCNN and Position Maps," Proc. 15th International

Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, pp. 60–65.

- [90] Lu, L., Pei-liang, Y., Wei-wei, S., and Jian-wei, M., (2017), "Similar Handwritten Chinese Character Recognition Based on CNN-SVM," Proc. International Conference on Graphics and Signal Processing, Singapore, pp. 16–20.
- [91] Ma, L.-L., Liu, J., and Wu, J., (2016), "A New Database for Online Handwritten Mongolian Word Recognition," Proc. 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, pp. 1131–1136.
- [92] Madhvanath, S., and Govindaraju, V., (2001), "The Role of Holistic Paradigms in Handwritten Word Recognition," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(2), pp. 149–164.
- [93] Mahadevan, U., and Srihari, S. N., (1999), "Parsing and Recognition of City, State, and ZIP Codes in Handwritten Addresses," *Proc.* 5th International Conference on Document Analysis and Recognition (ICDAR'99), Bangalore, India, pp. 325–328.
- [94] Malakar, S., Sharma, P., Singh, P. K., Das, M., Sarkar, R., and Nasipuri, M., (2017), "A Holistic Approach for Handwritten Hindi Word Recognition," *International Journal of Computer Vision and Image Processing*, 7(1), pp. 59–78.
- [95] Malakar, S., Ghosh, M., Bhowmik, S., Sarkar, R., and Nasipuri, M., (2020),
 "A GA Based Hierarchical Feature Selection Approach for Handwritten Word Recognition," *Neural Computing and Applications*, 32, pp. 2533–2552.
- [96] Märgner, V., Pechwitz, M., and El Abed, H., (2005), "Arabic Handwriting Recognition Competition," Proc. 8th International Conference on Document Analysis and Recognition (ICDAR), Seoul, Korea, pp. 70–74.
- [97] Maruyama, K., and Nakano, Y., (2000), "Recognition Method for Cursive Japanese Word Written in Latin Characters," *Proc.* 7th International Workshop on Frontiers in Handwriting Recognition, Amsterdam, Netherlands, pp. 133– 142.

- [98] Mookdarsanit, P., and Mookdarsanit, L., (2020), "ThaiWrittenNet: Thai Handwritten Script Recognition using Deep Neural Networks," *Azerbaijan Journal of High Performance Computing*, 3(1), pp. 75–93.
- [99] Moubtahij, H. E., Satori, K., and Halli, A., (2016), "Recognition of Off-Line Arabic Handwriting Words Using HMM Toolkit (HTK)," Proc. 13th International Conference on Computer Graphics, Imaging and Visualization, Beni Mellal, Morocco, pp. 167–171.
- [100] Mucherino, A., Papajorgji, P. J., and Pardalos, P.M., (2009), "k-Nearest Neighbor Classification," *Data Mining in Agriculture*, Springer Optimization and Its Applications, 34, Springer, New York, pp. 83–106.
- [101] Naik, V., and Desai, A., (2019), "Online Handwritten Gujarati Word Recognition," *International Journal of Computer Vision and Image Processing*, 9(1), pp. 35–50.
- [102] Namane, A., Guessoum, A., and Meyrueis, P., (2005), "New Holistic Handwritten Word Recognition and Its Application to French Legal Amount," *Proc. International Conference on Pattern Recognition and Image Analysis*, S. Singh, M. Singh, C. Apte, P. Perner, eds., Pattern Recognition and Data Mining, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, **3686**, pp.654–663.
- [103] Narang, S. R., Jindal, M. K., and Kumar, M., (2019), "Devanagari Ancient Documents Recognition Using Statistical Feature Extraction Techniques," Sādhanā, 44, pp. 1–8.
- [104] Narang, S. R., Jindal, M. K., Ahuja, S., and Kumar, M., (2020), "On the Recognition of Devanagari Ancient Handwritten Characters Using SIFT and Gabor Features," *Soft Computing*, 24, pp. 17279–17289.
- [105] Obaidullah, S. M., Das, S. K., and Roy, K., (2013), "A System for Handwritten Script Identification from Indian Document," *Journal of Pattern Recognition Research*, 8(1), pp. 1–12.
- [106] Obaidullah, S. M., Halder, C., Santosh, K. C., Das, N., and Roy, K., (2018),"PHDIndic_11: Page-Level Handwritten Document Image Dataset of 11

Official Indic Scripts for Script Identification," *Multimedia Tools and Applications*, **77**(2), pp. 1643–1678.

- [107] Pal, U., Roy, K., and Kimura, F., (2006), "A Lexicon Driven Method for Unconstrained Bangla Handwritten Word Recognition," Proc. 10th International Workshop on Frontiers in Handwriting Recognition (IWFHR), La Baule, France, pp. 601–606.
- [108] Pal, U., Roy, K., and Kimura, F., (2009), "A Lexicon-Driven Handwritten City Name Recognition Scheme for Indian Postal Automation," *IEICE Transactions on Information and Systems*, **92**(5), pp. 1146–1158.
- [109] Pal, U., Roy, R. K., and Kimura, F., (2011), "Handwritten Street Name Recognition for Indian Postal Automation," *Proc. International Conference on Document Analysis and Recognition*, Beijing, China, pp. 483–487.
- [110] Pal, U., Roy, R. K., and Kimura, F., (2012), "Multi-Lingual City Name Recognition for Indian Postal Automation," *Proc. International Conference on Frontiers in Handwriting Recognition*, Bari, Italy, pp. 169–173.
- [111] Paneri, P. R., Narang, R., and Goswami, M. M., (2017), "Offline Handwritten Gujarati Word Recognition," Proc.4th International Conference on Image Information Processing (ICIIP), Shimla, India, pp. 1–5.
- [112] Patel, C., and Desai, A., (2011), "Zone Identification for Gujarati Handwritten Word," Proc. 2nd International Conference on Emerging Applications of Information Technology, Kolkata, India, pp. 194–197.
- [113] Patel, M. S., and Reddy, S. C., (2014), "An Impact of Grid Based Approach in Offline Handwritten Kannada Word Recognition," *Proc. International Conference on Contemporary Computing and Informatics (IC3I)*, Mysore, India, pp. 630–633.
- [114] Patel, M. S., Kumar, R. and Reddy, S. C., (2015a), "Offline Kannada Handwritten Word Recognition Using Locality Preserving Projection (LPP) for Feature Extraction," *International Journal for Innovative Research in Science, Engineering and Technology*, 4(7), pp. 5078–5086.
- [115] Patel, M. S., Reddy, S. L., and Naik, A. J., (2015b), "An Efficient Way of Handwritten English Word Recognition," *Proc. 3rd International Conference*

on Frontiers of Intelligent Computing: Theory and Applications (FICTA), S. Satapathy, B. Biswal, S. Udgata, J. Mandal, eds., Advances in Intelligent Systems and Computing, Springer, Cham, **328**, pp. 563–571.

- [116] Patil, P., and Ansari, S., (2014), "Online Handwritten Devanagari Word Recognition Using HMM Based Technique," *International Journal of Computer Applications*, 95(17), pp. 17–21.
- [117] Pechwitz, M., Maddouri, S. S., Märgner, V., Ellouze, N., and Amiri, H., (2002), "IFN/ENIT-Database of Handwritten Arabic Words," Proc. Conference: Francophone International Conference on writing and Document (CIFED'02), Hammamet, Tunisia, pp. 1–8.
- [118] Plamondon, R., and Srihari, S. N., (2000), "On-Line and Off-Line Handwritten Recognition: A Comprehensive Survey," *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, **22**(1), pp. 63–84.
- [119] Pradeep, J., Srinivasan, E., and Himavathi, S., (2011), "Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System Using Neural Network," *International Journal of Computer Science and Information Technology*, 3(1), pp. 27–38.
- [120] Pramanik, R., Raj, V., and Bag, S., (2018), "Finding the Optimum Classifier: Classification of Segmentable Components in Offline Handwritten Devanagari Words," Proc. 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, pp. 1–5.
- [121] Pramanik, R., and Bag, S., (2020), "Segmentation-Based Recognition System for Handwritten Bangla and Devanagari Words Using Conventional Classification and Transfer Learning," *IET Image Processing*, **14**(5), pp. 959– 972.
- [122] Rajashekararadhya, S. V., and Ranjan, P. V., (2008), "Neural Network Based Handwritten Numeral Recognition of Kannada and Telugu Scripts," *Proc. IEEE Region 10 International Conference TENCON*, Hyderabad, India, pp. 1– 5.
- [123] Rani, R., Dhir, R., and Lehal, G. S., (2013), "Modified Gabor Feature Extraction Method for Word Level Script Identification—Experimentation

with Gurumukhi and English Scripts," *International Journal of Signal Processing, Image Processing and Pattern Recognition*, **6**(5), pp. 25–38.

- [124] Roy, A., Bhowmik, K. T., Parui, K. S., and Roy, U., (2005a), "A Novel Approach to Skew Detection and Character Segmentation for Handwritten Bangla Words," *Proc. Digital Image Computing: Techniques and Applications(DICTA)*, Queensland, Australia, pp. 1–8.
- [125] Roy, K., Vajda, S., Pal, U., Chaudhuri, B.B., and Belaid, A., (2005b), "A System for Indian Postal Automation," *Proc.* 8th International Conference on Document Analysis and Recognition (ICDAR'05), Seoul, South Korea, pp.1060–1064.
- [126] Roy, K., and Pal, U., (2006), "Word-Wise Hand-Written Script Separation for Indian Postal Automation," Proc. 10th International Workshop on Frontiers in Handwriting Recognition, La Baule, France, pp. 1–6.
- [127] Roy, K., (2008), "On the Development of an Optical Character Recognition System for Indian Postal Automation," Ph.D. Thesis, Jadavpur University, Kolkata, India.
- [128] Roy, K., Alaei, A., and Pal, U., (2010), "Word-Wise Handwritten Persian and Roman Script Identification," Proc. 12th International Conference on Frontiers in Handwriting Recognition, Kolkata, India, pp. 628–633.
- [129] Roy, P. P., Chherawala, Y., and Cheriet, M., (2014), "Deep-Belief-Network Based Rescoring for Handwritten Word Recognition," *Proc. 14th International Conference on Frontiers in Handwriting Recognition*, Heraklion, Greece, pp. 506–511.
- [130] Roy, P.P., Bhunia, A. K., Das, A., Dey, P., and Pal, U., (2016), "HMM-Based Indic Handwritten Word Recognition Using Zone Segmentation," *Pattern Recognition*, **60**, pp. 1057–1075.
- [131] Roy, P. P., Bhunia, A. K., and Pal, U., (2017), "HMM-Based Writer Identification in Music Score Documents Without Staff-Line Removal," *Expert System Applications*, 89, pp. 222–240.

- [132] Roy, R. K., Pal, U., Roy, K., and Kimura, F., (2020), "A System for Recognition of Destination Address in Postal Documents of India," *Malaysian Journal of Computer Science*, **33**(3), pp. 202–216.
- [133] Rushiraj, I., Kundu, S., and Ray, B., (2016), "Handwritten Character Recognition of Odia Script," Proc. International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, Odisha, India, pp. 764–767
- [134] Sahoo, S., Nandi, S. K., Barua, S., Pallavi, Bhowmik, S., Malakar, S., and Sarkar, R., (2018), "Handwritten Bangla Word Recognition Using Negative Refraction Based Shape Transformation," *Journal of Intelligent & Fuzzy Systems*, **35**(2), pp. 1765–1777.
- [135] Sarkar, R., Malakar, S., Das, N., Basu, S., Kundu, M., and M. Nasipuri, (2011), "Word Extraction and Character Segmentation from Text Lines of Unconstrained Handwritten Bangla Document Images," *Journal of Intelligent Systems*, **20**(3), pp. 227–260.
- [136] Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., and Basu, D. K., (2012), "CMATERdb1: A Database of Unconstrained Handwritten Bangla and Bangla-English Mixed Script Document Image," *International Journal of Document Analysis and Recognition*, **15**(1), pp. 71–83.
- [137] Sen, S., Bhattacharyya, A., Mitra, M., Roy, K., Naskar, S. K., and Sarkar, R.,
 (2020), "Online Bangla Handwritten Word Recognition Using HMM and Language Model," *Neural Computing and Applications*, 32, pp. 9939–9951.
- [138] Septi, M., and Bedda, M., (2006), "Contribution to the Recognition of Hand Arabic Word Based on Neural Network," *Proc. 2nd International Conference* on Information and Communication Technologies, Damascus, Syria, pp. 1635–1639.
- [139] Sharma, D. V., and Jhajj, P., (2010), "Recognition of Isolated Handwritten Characters in Gurmukhi Script," *International Journal of Computer Applications*, 4(8), pp. 9–17.
- [140] Sharma, N., Sengupta, A., Sharma, R., Pal, U., and Blumenstein, M., (2017),"Pincode Detection Using Deep CNN for Postal Automation," *Proc.*

International Conference on Image and Vision Computing New Zealand (IVCNZ), Christchurch, New Zealand, pp. 1–6.

- [141] Shaw, B., Parui, S. K., and Shridhar, M., (2008), "Offline Handwritten Devanagari Word Recognition: A Holistic Approach Based on Directional Chain Code Feature and HMM," *Proc. International Conference on Information Technology*, Bhubaneswar, India, pp. 203–208.
- [142] Shaw, B., Bhattacharya, U., and Parui, S. K., (2015), "Offline Handwritten Devanagari Word Recognition: Information Fusion at Feature and Classifier Levels," *Proc. 3rd IAPR Asian Conference on Pattern Recognition (ACPR)*, Kuala Lumpur, Malaysia, pp. 720–724.
- [143] Shi, B., Bai, X., and Yao, C., (2017), "An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **39**(11), pp. 2298–2304.
- [144] Shridhar, M., Kimura, F., Truijen, B., and Houle, G. F., (2002), "Impact of Lexicon Completeness on City Name Recognition," *Proc.* 8th International Workshop on Frontiers in Handwriting Recognition (IWFHR'02), Niagara on the Lake, Ontario, Canada, pp. 513–518.
- [145] Simayi, W., Ibrahim, M., Zhang, X. Y., Liu, C. L., and Hamdulla, A., (2020), "A Benchmark for Unconstrained Online Handwritten Uyghur Word Recognition," *International Journal of Document Analysis and Recognition* (*IJDAR*), 23, pp. 205–218.
- [146] Singh, H., Sharma, R. K., Kumar, R., Verma. K., Kumar, R., and Kumar, M., (2020), "A Benchmark Dataset of Online Handwritten Gurmukhi Script Words and Numerals," *Proc. International Conference on Computer Vision and Image Processing*, N. Nain, S. Vipparthi, B. Raman, eds., Communications in Computer and Information Science, Springer, Singapore, 1148, pp. 457–466.
- [147] Singh, P. K., Sarkar, R., Das, N., Basu, S., Kundu, M., and Nasipuri, M., (2017), "Benchmark Databases of Handwritten Bangla-Roman and Devanagari-Roman Mixed-Script Document Images," *Multimedia Tools and Applications*, **77**(7), pp. 8441–8473.

- [148] Smith, F., (1969), "Familiarity of Configuration vs. Discriminability of Features in the Visual Identification of Words," *Psychonomic Science*, 14, pp. 261–262.
- [149] Sperling, G., (1963), "A model for visual memory tasks," *Human Factors*, 5, pp. 19–31.
- [150] Srihari, S. N., and Keubert, E. J., (1997), "Integration of Hand Written Address Interpretation Technology into the United States Postal Service Remote Computer Reader System," Proc. 4th International Conference on Document Analysis and Recognition (ICDAR), Ulm, Germany, pp. 892–896.
- [151] Stamatopoulos, N., Gatos, B., Louloudis, G., Pal, U., and Alaei, A., (2013),
 "ICDAR 2013 Handwriting Segmentation Contest," *Proc. 12th International Conference on Document Analysis and Recognition (ICDAR 2013)*, Washington, DC, USA, pp. 1402–1406.
- [152] Sudholt, S., and Fink, G. A., (2016), "Phocnet: A Deep Convolutional Neural Network for Word Spotting in Handwritten Documents." Proc. 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China, pp. 277–282.
- [153] Sundaram, S., and Ramakrishnan, A. G.,(2008), "Two Dimensional Principal Component Analysis for Online Tamil Character Recognition," Proc. 11th International Conference on Frontiers in Handwriting Recognition, Montreal, Quebec, Canada, pp. 88–94.
- [154] Tamen, Z., Drias, H., andBoughaci, D., (2017), "An Efficient Multiple Classifier System for Arabic Handwritten Words Recognition," *Pattern Recognition Letters*, 93, pp. 123–132.
- [155] Tavoli, R., Keyvanpour, M., and Mozaffari, S., (2018), "Statistical Geometric Components of Straight Lines (SGCSL) Feature Extraction Method for Offline Arabic/Persian Handwritten Words Recognition," *IET Image Processing*, **12**(9), pp. 1606–1616.
- [156] Tay, Y. H., Lallican, P. M., Khalid, M., Viard-Gaudin, C., and Knerr, S., (2001), "An Offline Cursive Handwritten Word Recognition System," Proc.

IEEE Region 10 International Conference on Electrical and Electronic Technology (TENCON 2001), Singapore, **2**, pp. 519–524.

- [157] Thadchanamoorthy, S., Kodikara, N. D., and Premaretne, H. L., (2013),
 "Tamil Handwritten City Name Database Development and Recognition for Postal Automation," *Proc.* 12th International Conference on Document Analysis and Recognition, Washington, DC, USA, pp. 793–797.
- [158] Tripathy, N., and Pal, U.,(2004), "Handwriting Segmentation of Unconstrained Oriya Text," Proc. 9th International Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), Kokubunji, Tokyo, Japan, pp. 306–311.
- [159] Viard-Gaudin, C., Lallican, P., and Knerr, S., (2005), "Recognition-Directed Recovering of Temporal Information from Handwriting Images," *Pattern Recognition Letters*, 26 (16), pp. 2537–2548.
- [160] Vichianchai, V., (2011), "Thai-Word Segmentation Through Thai Writing Structure Matching," Proc. International Conference on Modeling, Simulation and Control, Singapore, 10, pp. 184–188.
- [161] Waard, W. P. D., (1995), "An Optimized Minimal Edit Distance for Handwritten Word Recognition," *Pattern Recognition Letters*, 16(10), pp. 1091–1096.
- [162] Wang, X., and Tsutsumida, T., (1999), "A New Method of Character Line Extraction from Mixed-Unformatted Document Image for Japanese Mail Address Recognition," Proc. 5th International Conference on Document Analysis and Recognition (ICDAR'99), Bangalore, India, pp. 769–772.
- [163] Wei H., Liu C., Zhang H., Bao F., and Gao G., (2019), "End-to-End Model for Offline Handwritten Mongolian Word Recognition," *Proc. CCF International Conference on Natural Language Processing and Chinese Computing*, J. Tang, MY. Kan, D. Zhao, S. Li, H. Zan, eds., NLPCC 2019. Lecture Notes in Computer Science, Springer, Cham, **11839**. pp. 220–230.
- [164] Wen, Y., Lu, Y., and Shi, P., (2007), "Handwritten Bangla Numeral Recognition System and Its Application to Postal Automation," *Pattern Recognition*, **40**(1), pp. 99–107.

- [165] Woodworth, R.S., (1938), "Experimental psychology," H. Holt and Company, New York.
- [166] Yue, S., Li, P., and Hao, P., (2003), "SVM Classification: Its Contents and Challenges," *Applied Mathematics–A Journal of Chinese Universities*, 18, pp. 332–342.
- [167] Zhang, T. Y., and Suen, C. Y., (1984), "A Fast Parallel Algorithm for Thinning Digital Patterns," *Communications of the ACM*, 27(3), pp. 236–239.
- [168] Zhang, Q., Yuan, Y., Li, N., Wei, X., and Miao, J., (2009), "A New Way for Chinese Place Name Recognition," *Proc. International Conference on Asian Language Processing*, Singapore, pp. 129–134.
- [169] Zinjore, R. S., and Ramteke, R. J., (2015), "Identification and Removal of Devanagari Script and Extraction of Roman Words from Printed Bilingual Text Document," *IJCA Proc. National Conference on Digital Image and Signal Processing (DISP)*, pp. 17–20.

Web Links

- [w1] https://www.omniglot.com/chinese/index.htm
- [w2] https://www.ethnologue.com/language/nld
- [w3] https://www.omniglot.com/writing/mongolian.htm
- [w4] https://asianstudies.unc.edu/persian/
- [w5] https://www.ethnologue.com/language/ben
- [w6] https://www.censusindia.gov.in/2011Census/Language-2011/Statement-1.pdf
- [w7] https://www.ethnologue.com/language/pan
- [w8] https://www.ethnologue.com/language/pnb
- [w9] https://www.ethnologue.com/language/kan

Research Articles in SCI Indexed Journals

- [1] Harmandeep Kaur and M. Kumar, (2018), "A Comprehensive Survey on Word Recognition for Non-Indic and Indic Scripts," *Pattern Analysis and Applications*, 21(4), pp. 897-929. https://doi.org/10.1007/s10044-018-0731-2 (Electronic ISSN: 1433-755X; Print ISSN: 1433-7541) (SCI Indexed with I.F. 1.512).
- [2] Harmandeep Kaur and M. Kumar, (2020), "Offline Handwritten Gurumukhi Word Recognition Using eXtreme Gradient Boosting Methodology," *Soft Computing*. https://doi.org/10.1007/s00500-020-05455-w (Electronic ISSN: 1433-7479; Print ISSN: 1432-7643) (SCI Indexed with I.F. 3.050).
- [3] Harmandeep Kaur and M. Kumar, (2021), "On the Recognition of Offline Handwritten Word Using Holistic Approach and AdaBoost Methodology," *Multimedia Tools and Applications*. https://doi.org/10.1007/s11042-020-10297-7 (Electronic ISSN: 1573-7721; Print ISSN: 1380-7501) (SCI Indexed with I.F. 2.313).

Research Articles in Conference Proceedings

- [1] Harmandeep Kaur and M. Kumar, (2019), "Benchmark Dataset: Offline Handwritten Gurmukhi City Names for Postal Automation," *Proc. Workshop on Document Analysis and Recognition*, DAR 2018, S. Sundaram, G. Harit, eds., Communications in Computer and Information Science, Springer, Singapore, **1020**, pp. 152–159. https://doi.org/10.1007/978-981-13-9361-7_14
- [2] Harmandeep Kaur and M. Kumar, (2020), "Performance Evaluation of Various Feature Selection Techniques for Offline Handwritten Gurumukhi Place Name Recognition," *Proc. International Conference on Machine Intelligence and Data Science Applications* (*MIDAS 2020*), Dehradun, Uttarakhand, India. (Accepted for publication) (BEST PAPER AWARD).