CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis, entitled "**Design** and **Development of Novel Drug Delivery Systems of Resveratrol for Treatment** of **Psoriasis**" in fulfillment of the requirements of the award of the degree of Doctor of Philosophy in Faculty of Pharmaceutical Sciences and submitted in Maharaja Ranjit Singh Punjab Technical University, Bathinda is an authentic record of my own work carried out during a period from 2016 to 2020 under the supervision of **Dr. Raj Kumar Narang.**

The matter embodied in this thesis has not been submitted by me for the award of any other degree of this or any other University/Institute.

(Bharat Khurana)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Dr. Raj Kumar Narang Professor Departmrnt of Pharmaceutics

ISF College of Pharmacy, Moga

The Ph.D. Viva-Voice examination of Bharat Khurana, has been held on

Sign. of Supervisor

Sign. of External Examiner

ACKNOWLEDGMENTS

Behind every successful journey, it is always said that there is an invisible force, which shapes things in the right way and direction in which they should be. I find it my moral duty to bow to that divine power "ALMIGHTY GOD" my Babaji, for bestowing me with everything, and because of WHOM, I could accomplish my research task with success.

I would like to extend my sincerest regard to my supervisor, Prof. (Dr.) Raj Kumar Narang without whom, this work would not have been possible. I take this opportunity to express my heartfelt gratitude and extreme respect for him. Throughout this work, he has always given me strong support, encouragement, and confidence along with criticism, when necessary, which enabled me to raise my standards of research.

With a deep sense of gratitude, I would extend my sincere thanks to Prof. S. P. Vyas, who introduced me to the field of research. Thank you so much, Sir, for your continuous support, persistent encouragement and wholehearted help.

With high esteems and profound regards, I take the privilege to express my sincere gratitude to Mr. Parveen Garg, Chairman, ISFCP, Moga for his encouragement, good wishes and providing me with the best facilities during the research work.

It gives me immense pleasure to express my gratitude to Prof. (Dr.) Rahul Deshmukh, Head, Department of Pharmaceutical Sciences Maharaja Ranjit Singh Punjab Technical University, Bathinda for his support.

I also take the privilege to express my sincere gratitude to all the faculty members of the Department of Pharmaceutical Sciences, Maharaja Ranjit Singh Punjab Technical University, Bathinda with a special mention of Dr. Ashish Baldi, Dr. Puneet Bansal, Dr. Uttam Kumar Mandal, Dr. Amit Bhatia for their encouragement and good wishes.

I express my gratitude and thankfulness to Prof. GD Gupta, ISFCP, Moga for all the support, guidance and motivation.

I would also like to express my heartfelt thanks to Director, Sami Labs, Bangalore for providing gift sample of Resveratrol.

I express my thankfulness to Mr. Abhay Pandey and all staff of ISFAL, Moga for providing the necessary facilities to carry out my research work.

My special thanks go to all the non-teaching staff of the ISFCP, Moga for their timely support specially Mrs. Krishna, Mrs. Jasveer, Mr. Sewak and Mrs. Harinder.

I express a deep sense of gratitude to Prof. Amit Goyal, Prof. Gautam Rath, Prof. Neeraj Mishra, Prof. Ravinder Rawal, Prof. M S Rathore and Prof. G S Ganti whose blessings were always with me.

I am grateful for the heartfelt assistance, encouragement, and friendship that I received from my Mr. Gurmeet Singh, Mr. Amandeep Singh, Mr. Rohit Bhatia, Dr. Vir Vikram, Mr. Sandeep Rathore, Mr. Amit Sharma, Mr. Tanmay, Dr. Pooja Chawla, Dr. Sukhbir Kaur, Ms. Ankita, Ms. Avileen, Ms. Shelly, Ms. Tanya, Ms. Veerpal, Ms. Kiran and Ms. Navjot.

The informal support and encouragement by ISF Faculty members have been indispensable. It is not possible to name all of them but at this moment of my life, I remember all of them and thank each of them for their help and assistance.

I will do injustice if I fail to express my deep sense of gratitude and gratefulness towards my parents (Mr. Baldev Khurana and Mrs. Parveen Khurana) and parents' inlaws (Dr. V K Arora and Mrs. Shanta Arora). Special thanks to my parents, who are always an inspiration, supported me, encouraged me, and always stood next to me in the tough times. They even made me capable enough to stand on my own. Thank you a lot for your untiring love, care, support, and sacrifice. I fall short of words to express my feelings for all their deeds and concern and would dedicate the thesis to them.

I take this opportunity to express my heartfelt acknowledge to my Wife and best friend Dr. Daisy Arora Khurana for his love, affection, and cooperation during this period of my life. She is very encouraging, optimistic and sacrificed his much-nurtured dreams for my future. Dear wife your unconditional love, support and care was the driving force which helped me to accomplish this never-ending cascade.

A smile comes to my face when I mention the name of my son Garvit Khurana who is eight years old now. My special acknowledgment to him for his constant love, moral support, and sacrifice for my research, yet he never complained about my long seating at the computer and staying at the lab.

My sisters (Mrs. Deepika Adhlakha, Mrs. Lovleen Madaan), sisters in law (Mrs.Vasudha Oberoi, Mrs.Ritika Arora, Mrs.Priya Setia, Mrs.Shreya Banga), and brothers in law (Mr.Madhur Arora Mr. Sanjay Oberoi, Mr. Rohit Adhlakha, Mr. Vikas Madaan, Mr. Vimal Setia, Mr. Rahul Banga) have been the pillars of my life,

iii

the thesis would not have been possible without their encouragement and confidence on me. I would like to thank my whole family for the blessings they bestowed on me. My naughty family kids, Pranav, Keerat, Kohenoor, Eshana, Amyra, Ridhi, and Sidhi have brought lots of smiles and made my life beautiful with their warm and sweet gestures.

At last, I would like to acknowledge all those whose names remained unmentioned here.

(Bharat Khurana)

Figure No.	Title of Figure	Page No.
1.1	Structure of normal skin and psoriatic skin	3
1.2	Advantages of skin drug delivery	3
1.3	Different events in the pathogenesis of psoriasis	5
1.4	Role of Resveratrol in treating several conditions	8
1.5	Anti-oxidative mechanism of Resveratrol	9
1.6	Categorical representation of different kinds of nanocarriers for topical skin delivery	14
1.7	Core-shell morphology of Polymeric micelles	16
1.8	Formation of polymeric micelles	16
1.9	Various methods for the preparation of nanoemulsion	18
1.10	Difference between QbT and QbD	21
1.11	Diagrammatic representation showing research envisaged	24
3.1	Structure of <i>trans</i> Resveratrol	36
3.2	Biological roles of Resveratrol with its mechanism of action	37
4.1	Preformulation studies of Resveratrol	51
4.2	Procedure for performing UV Spectroscopy	52
4.3	Procedure for performing FTIR Spectroscopy	53
4.4	Procedure for determining melting point of Resveratrol	53
4.5	Schematic representation for plotting standard curve of Resveratrol in methanol	54
4.6	Schematic representation for developing analytical method by HPLC method	55
4.7	Schematic representation of procedure for determining partition coefficient of Resveratrol	56
4.8	Schematic layout for determining solubility of Resveratrol	57
4.9	Flowchart for preparation of Resveratrol loaded polymeric micelles	60
4.10	Flowchart for formulation of Resveratrol loaded vitamin E based nanoemulsion	66

LIST OF FIGURES

4.11	Pictorial representation of Brookfield R/S plus viscometer	71
4.12	Franz Diffusion cell for skin permeation studies	74
5.1	UV spectrum of Resveratrol in methanol	79
5.2	FTIR spectrum of Resveratrol	79
5.3	DSC thermogram of Resveratrol	80
5.4	Calibration plot of Resveratrol in methanol at 306 nm using UV Spectrophotometric method	82
5.5	Calibration curve of Resveratrol in a mixture of PBS pH 7.4 and ethanol (7:3 v/v) at 306 nm using UV Spectrophotometric method	83
5.6	HPLC chromatogram of Resveratrol	84
5.7	Calibration curve of Resveratrol using HPLC method	85
5.8	"Ishikawa Fish bone diagram" for the development of polymeric micelles	90
5.9	Normal plot of Residuals for Resveratrol loaded polymeric micelles	96
5.10	Residuals vs Predicted plot for Resveratrol loaded polymeric micelles	97
5.11	Residuals vs run plot for Resveratrol loaded polymeric micelles	98
5.12	Box-Cox Plot for power transform for Resveratrol loaded polymeric micelles	99
5.13	Predicted vs Actual Plot for Resveratrol loaded polymeric micelles	100
5.14	Leverage versus Runs Plot for Resveratrol loaded polymeric micelles	101
5.15	Perturbation curve for Micellar incorporation efficiency of polymeric micelles	103
5.16	2D contour plot for Micellar incorporation efficiency of polymeric micelles	103
5.17	3D Response surface morphology for Micellar incorporation efficiency of polymeric micelles	104
5.18	Perturbation curve for particle size of polymeric micelles	104

5.19	2D contour plot for particle size of polymeric micelles	105	
5.20	3D Response surface morphology for particle size of	105	
	polymeric micelles		
5.21	Perturbation curve for skin deposition of polymeric micelles	106	
5.22	2D contour plot for skin deposition of polymeric micelles	106	
5.23	3D Response surface morphology for skin deposition of	107	
5.25	polymeric micelles	107	
5.24	Desirability plot for numerically optimized polymeric	111	
J.2 4	micellar formulation	111	
5.25	Overlay plot showing predicted results during graphical	111	
5.25	optimization of polymeric micelles formulation	111	
5.26	Size and PDI report of Polymeric micelles	112	
5.27	Zeta potential report of polymeric micelles	113	
5.28	Transmission electron microscopic image of Polymeric	114	
5.20	micelles	114	
5.29	Pseudo-ternary phase diagram showing o/w nanoemulsion	117	
5.27	region	117	
5.30	Graph showing residuals for Resveratrol loaded	123	
5.50	nanoemulsion	123	
5.31	Graph between Residuals and Predicted plot related to	124	
5.51	Resveratrol containing nanoemulsion	121	
5.32	Graph between Residuals and run plot related to Resveratrol	125	
5.52	containing nanoemulsion	123	
5.33	Box-Cox curve for power transform for Resveratrol	126	
	containing nanoemulsion	120	
5.34	Predicted vs Actual Plot for Resveratrol containing	127	
	nanoemulsion	1 /	
5.35	Leverage versus Runs Plot for Resveratrol containing	128	
	nanoemulsion		
5.36	Perturbation curve for globule size of nanoemulsion	130	
5.37	Perturbation curve for cumulative drug permeation of	130	
	nanoemulsion	150	
5.38	Perturbation curve for flux of nanoemulsion	131	

5.39	Perturbation curve for skin deposition of nanoemulsion	131
5.40	2D Contour plot for globule size of nanoemulsion	132
5.41	2D Contour plot for cumulative drug permeation of nanoemulsion	132
5.42	2D Contour plot for flux of nanoemulsion	133
5.43	2D Contour plot for skin deposition of nanoemulsion	133
5.44	3D Response surface plot for globule size of nanoemulsion	134
5.45	3D Response surface plot for flux of nanoemulsion	134
5.46	3D Response surface plot for cumulative drug permeation of nanoemulsion	135
5.47	3D Response surface plot for skin deposition of nanoemulsion	135
5.48	Desirability plot for numerically optimized nanoemulsion formulation	138
5.49	Overlay plot showing predicted results during graphical optimization of nanoemulsion formulation	138
5.50	Size and PDI report of Nanoemulsion	139
5.51	Zeta potential report of Nanoemulsion	140
5.52	Transmission electron microscopic image of Nanoemulsion	141
5.53	Rheogram of NEG	144
5.54	Rheogram of PMG	144
5.55	Graph showing cumulative % Release of Resveratrol from different formulations	146
5.56	Permeability flux of different Resveratrol formulations	150
5.57	Skin deposition values of different Resveratrol formulations	150
5.58	CLS micrographs (a) C6 loaded CG (b) C6 loaded PMG (c) C6 loaded NEG	151
5.59	Free radical inhibition activity using DPPH assay	153
5.60	Serum cytokines concentration (TNF-α, IL-17 and IL-23) of different groups	157
5.61	Dimension and weight of spleen of animals of different groups	159
5.62	Histology of skin of animals of different groups	161

LIST OF TABLES

Table No.	Title of Table	Page No.
1.1	Classification of Psoriasis	6
1.2	Available treatment strategies for psoriasis	7
1.3	List of topical novel drug delivery systems for psoriasis	11-13
3.1	Physical properties of Resveratrol	38
3.2	Profile of Transcutol-P	39
3.3	Profile of Tween 80	40
3.4	Profile of Pluronic F-127	41
3.5	Profile of Pluronic P-123	42
3.6	Profile of TPGS	43
3.7	Profile of Ethyl Oleate	44
3.8	Profile of Carbopol	45
4.1	List of chemicals and excipients	46-48
4.2	List of different instruments	48-50
4.3	List of various computer software used in the present research	50
4.4	Variables (CQAs and CMAs) used in Central Composite Design with coded and actual values for developing polymeric micelles	61
4.5	Different experimental runs for development of polymeric micelles	62
4.6	Variables (CQAs and CMAs) used for employing Factorial Design with coded and actual values for developing nanoemulsion	67
4.7	Different experimental runs for development of Nanoemulsion	68
4.8	Different animal groups used in antipsoriatic studies	75
5.1	Explanation of spectrum obtained during Fourier Transform Infra-Red spectroscopy	80
5.2	Calibration curve of Resveratrol in methanol at 306 nm using UV Spectrophotometric method	81

	Calibration curve of Resveratrol in a mixture of PBS pH 7.4	
5.3	and ethanol (7:3 v/v) at 306 nm using UV	83
	Spectrophotometric method	
5.4	Calibration curve of Resveratrol using HPLC method	85
5.5	Saturated solubility of Resveratrol in different mediums	86
5.6	QTPP elements for the production of Resveratrol loaded polymeric micelles	88
5.7	Identified CQAs accountable to fulfill defined QTPP	89
5.8	FMEA for Risk assessment for Resveratrol loaded polymeric micelles	91
5.9	CQAs and CMAs used in full factorial design with coded and actual values of CMAs	92
5.10	Response values of experimental runs for development of micelles	93
5.11	Outline and build information on applied design of polymeric micelles	94
5.12	Target constraints set for CMAs and CQAs during numericaloptimization of polymeric micelles	110
5.13	Solution obtained after Post analysis point prediction using Desirability	110
5.14	Solubility of resveratrol in different excipients	116
5.15	Variables (CQAs and CMAs) used for employing Factorial Design with coded and actual values for developing nanoemulsion	118
5.16	Response values of experimental runs for development of nanoemulsion	119
5.17	Design summary and build information for optimization of nanoemulsion	120
5.18	Target constraints set for CMAs and CQAs during numerical optimization of nanoemulsion	137
5.19	Solution obtained after Post analysis point prediction usingDesirability approach	137
5.20	Cumulative % Release of Resveratrol from different	145

	formulations	
5.21	Mathematical release models of Resveratrol loaded formulation	146
5.22	Permeation flux and skin deposition of Resveratrol after 24 hours from different colloidal formulations	149
5.23	IC ₅₀ values of Resveratrol loaded formulations	153
5.24	Different animal groups used in antipsoriatic studies	154
5.25	Average Psoriasis Area and Severity Index (PASI) score for different groups	155
5.26	Concentration of cytokines in serum	156
5.27	Spleen weight in differnet animal groups	158
5.28	Stability Studies of Resveratrol loaded PMG	163
5.29	Stability Studies of Resveratrol loaded NEG	164

LIST OF ABBREVIATIONS USED

2-D	2-Dimension
3-D	3-Dimension
ANOVA	Analysis of Variance
BCS	Biopharmaceutical classification system
CAAs	Critical analytical attributes
CCD	Central composite design
CD	Cluster of Differentiation
CHOL	Cholesterol
CLSM	Confocal laser scanning microscopy
CMAs	Critical material attributes
CMC	Critical Micelle Concentration
CMPs	Critical method parameters
CPPs	Critical process parameters
CQAs	Critical quality attributes
DLS	Dynamic light scattering
DoE	Design of experiments
DPPH	2,2-diphenyl- 1-picrylhydrazyl
DSC	Differential scanning calorimetry
EDTA	Ethylene diamine tetra-acetic acid
EE	Entrapment efficiency
ELISA	Enzyme-linked immune sorbent assay
FbD	Formulation-by-design
FCCD	Face centred composite design
FD	Factorial design
FDA	Food and drug administration
FTIR	Fourier transform infrared
HLB	Hydrophilic lipophilic balance
HPLC	High-performance liquid chromatography
IAEC	Institutional animal ethics committee

IC ₅₀	Half Maximal Inhibitory concentration
ICH	International conference on harmonization
IL-17	Interleukin 17
IL-23	Interleukin 23
IL-6	Interleukin 6
IMQ	Imiquimod
LOD	Limit of detection
MIE	Micellar incorporation efficiency
MMPS	Matrix metalloproteinases
MWCO	Molecular weight cut-off
NE	Nanoemulsion
NEG	Nanoemulgel
OVAT	One variable at a time
PASI	Psoriasis area severity index
PDI	Polydispersity Index
PEO	polyethylene oxide
PM	Polymeric micelles
PMG	Polymeric micellar gel
PPO	polypropylene oxide
PRESS	Predicted residual error sum of squares
PS	Particle size
QbD	Quality by design
QTPP	Quality target product profile
ROS	Reactive oxygen species
RPM	Revolution per min
RSM	Response surface modeling
SC	Stratum corneum
SD	Standard deviation
SD	Skin deposition
SIRT	Sirtuin
Smix	Surfactant/cosurfactant mixture
TEM	Transmission electron microscope
TNF-α	Tumor necrosis factor-alpha

UV

Ultraviolet